
CMT

Configuration Management Tool

Version v1r14

Christian Arnault

arnault@lal.in2p3.fr

General index

 1 - Presentation
This environment, based on some management conventions and comprising several shell-based
utilities, is an attempt to formalize software production and especially configuration management
around a package -oriented principle.

The notion of packages represents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for producing a system or a
framework . In such an environment, several persons are assumed to participate in the
development and the components themselves are either independent or related to each other.

The environment provides conventions (for naming packages, files, directories and for
addressing them) and tools for automating as much as possible the implementation of these
conventions. It permits the description of the configuration requirements and automatically
deduce from the description the effective set of configuration parameters needed to operate the
packages (typically for building them or using them).

CMT lays upon some organisational or managerial principles or mechanisms described below.
However, it permits in many respects the users or the managers to control , specialize and
customize these mechanisms, through parameterization, strategy control and generic
specifications.

Many such packages are produced and maintained.
The packages may or not be related to each other (defining a direct acyclic graph of
packages - not just a single tree).
The concept of package may be extended to implement structuring or organizing patterns
such as those involved in project management.
Project management policies and behavioural patterns can be easily expressed and
automated by CMT.
Each executable application (from now on simply named applications) either belongs to a
particular package and/or defines its own environment and then makes use of some other
packages.
Each package can be uniquely identified within the system or the framework by a name
which is usually a short mnemonic and which may be also used for isolating its name-space

1

(eg. by prefixing components of the package by its mnemonic).
A package installed in this environment may be exported to a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved
through the transport, the reconstruction procedure will be preserved. Configuration
specifications can be easily provided to cope with machine, site or system specific features.
Packages are maintained consistently to their declared relationships to each other through a
version identification model based on :

a version is defined with a mnemonic comprising one to three numbers the major id,
the minor id, and the patch id
versions with different major ids are said to be incompatible,
versions with same major ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.
versions differing only by their patch id are said to be fully compatible with each other.

Version control andmanagement schemes (eg. by using CVS) are usually consistently
operated, applying the conventions on organization and version identification.
An application that uses one or several packages managed in this environment should not
itself be constrained to be managed by CMT . The tools should only require a few exported
features (such as a few environment variables) for referencing any given package.
similarly, a package maintained in this environment must be able to use packages that are
not managed in this environment (which are often called external packages).

Following these definitions, the basic configuration management operations involved here (and
serviced by the CMT ’ tools) consist of :

installing the packages in conventional locations so that they can be referenced by each
other, following projects or teams structuring paradigms,
describing the configuration requirements for each package:

dependencies to other packages,
Generic behavioural patterns meant to describe generic configuration items or project
specific policies.
symbols to be exported to client packages (environment variables, make macros, etc...)
components (also named constituents) of the packages (libraries, applications,
generated documents)
parameterization of the build and test tools
parameterization of the deployment tools
Strategies that CMT should follow at run time, overriding its default ones.

deducing the effective configuration parameters from the requirements so as to automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible alternate versions of available packages).

 2 - The conventions
This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and developed :

2

Each package is installed in a standard directory structure defined at least as follows:

<some root>/<Package mnemonic>/<version mnemonic>/cmt

or / and (obsolescent convention)

<some root>/<Package mnemonic>/<version mnemonic>/mgr

The<version mnemonic>directory level may also be omitted, in which case the version
information will be stored inside the cmt directory in a conventional file named
version.cmt leading to the following alternate organization:

<some root>/<Package mnemonic>/cmt/version.cmt

In both cases, the cmt directory holds the main source of information needed by CMT : the
requirements file. All CMT -related operations are generally executed from this directory.

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized as a valid CMT package . Any other structuring convention will be
supported by CMT and its operations can always be customized to follow them

This structure is a central concept since all relationships between packages relies on the
package identification which unambiguously and exclusively consists in the duet [
package-name , package-version] (or package-name only when the version directory level
is omitted).

Constructing the internal structure of a package.

Many other parallel branches (similar to cmt) such as src , include or test may be freely
added to this list according to the specific needs of each package. In particular, a set of such
parallel branches are expected to contain binary outputs (those that compilers, linkers,
archive managers or other kinds of code or pseudo-code generators can produce). Their
name always corresponds to the particular configuration tag used to produce the output
(such as the machine or operating system type). The CMT toolkit provides, through the cmt
system utility, a default value for this token. An environment variable (CMTCONFIG) is
also assigned to this value (See the complete description of configuration tags).

Each branch may in addition be freely structured, and there is no constraint to the
complexity of this organization.

3

1 - Structuring a package - A typical example.

Organizing a software base.

A software base is generally composed of multiple coherent sets of packages, each installed
in its specific root directory and forming different package areas

There are no constraints on the number of such areas into which CMT packages are
installed. We’ll see later on how the different areas will be declaredand identified by CMT .

examples of such organization can be :

4

2 - Structuring a sofware base.

 3 - The architecture of the environment
This environment is based on the fact that one of its packages (named CMT) provides the basic
management tools. CMT , as a package, has very little specificities and as such itself obeys the
general conventions. The major asymetry between CMT and all other packages is the fact that
once CMT is installed it implicitly defines one default root area for other packages (through the
environment variable CMTROOT).

Then packages may be installed either in this default root area or in completely different areas.
The only constraint in this case being that their root will have to be specified explicitly.

A typical configuration for this environment consists of selecting a public area (generally
available from several machines through an NFS or AFS -like mechanism), installing the CMT
basic package, and then installing user packages in this default root or in private ones. One
frequent semantic given to this style of configuration is to consider the packages installed in the
area hanging below default root as the publicly available versions, whereas packages installed
elsewhere are rather meant to be managed in a private context, or in the context of a non public
project. However, dependencies between packages will always be possible (as long as the system
based protections provide appropriate access rights).

5

CMT is operated through one main user interface : the cmt command, which handles the CMT
conventions and which provides a set of services for :

creating a new package, installing it below thedefault root or in a private area. This
operation will create or check the local package directory tree and generate several minimal
scripts (see the description of the create command),
describing or monitoring :

the relationships between the package and other packages
the configuration features either specified in the current package, or imported from
related (used) ones. (symbols, patterns, fragments)
the constituents of the package in terms of libraries, executables, or generated
documents.

automatically generating the reconstruction scripts (makefiles) from this description.
recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared libraries, C prototypes, management of interactions between CVS and
CMT itself, the management of a similar architecture for Windows or OS9 , setting up
protections for packages (though locks) etc...).

 3. 1 - Supported platforms

CMT has been ported and tested on a wide range of machines/operating systems, including :
DEC-Unix V4.0
HP-UX-10 (several types of platforms)
AIX-4
Solaris
IRIX
Several variants of LynxOS
Linux 2.x
Windows 95/98/NT/Windows2000 in various environments:

nmake based environment
MSDev/VisualC 6 environment
MSDev/VisualC 7 environment

Darwin (Mac OS X)
This in particular means that a package developped on one platform may be re-configured
towards any of these platforms without any change to its configuration description. All
platform specific tools will be dynamically reconfigured and parameterized transparently.

 4 - Installing a new package
We consider here the installation of a user package. Installing CMT itself requires special
attention and is described in a dedicated section of this document.

Therefore, we assume that some root directory has been selected by the system manager, and that
CMT is already installed somewhere. One first has to setup CMT in order to gain access to the
various management utilities, using for example the shell command:

6

csh> source /lal/CMT/v1r14/mgr/setup.csh

or

ksh> . /lal/CMT/v1r14/mgr/setup.sh

or

dos> call \lal\CMT\v1r14\mgr\setup.bat

Obviously, this operation must be performed (once) before any other CMT action. Therefore it is
often recommended to install this setup action straight in the login script.

The setup script used in this example is a constant in the CMT environment : every
configured package will have one such setup script automatically generated and installed by
CMT . It is one important entry point to any package (and thus to CMT itself). It provides
environment variable definitions and recursive invocations of setup scripts for related (used
) packages (A corresponding cleanup script is also provided). This script contains a uniform
mechanism for interpreting the requirements file so as to dynamically define environment
variables, aliases for the package itself and all its used packages. It is constructed once per
package installation by the cmt create command, or restored by the cmt config command (if
it has been lost).

A package is primarily defined by a name and a version identifier (this duet actually forms the
complete package identifier). These two attributes will be given as arguments to cmt create such
as in the following example :

csh> cd mydev
csh> cmt create Foo v1
--
Configuring environment for package Foo version v1.
CMT version v1r14. [1]
Root set to /home/arnault/mydev.
System is Linux-i686 [2]
--
Installing the package directory [3]
Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

1. This shows which actual CMT version you are currently using
2. This shows the current configuration tag (also available by the cmt system command).

In this example this is a Linux machine
3. This shows the detailed construction of the complete directory structure, starting from the

top directory which has the name of the package. Since we are creating a completely new
package, there will be by default only two branches below the version directory : cmt and
src .

The package creation occured from the current directory, creating from there the complete
directory tree for this new package.

7

In the next example, we install the package in a completely different area,by explicitly specifying
the path to it as a third argument to cmt create :

> cmt create Foo v1 /ProjectB
--
Configuring environment for package Foo version v1.
CMT version v1r14.
Root set to /ProjectB.
System is Linux-i686
--
Installing the path directory
Installing the package directory
Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

Several file creations occurred at this level :
a minimal directory tree for the package, including src and cmt (the other branches will be
installed when needed or generated at build time).

an empty configuration specification file (named requirements) installed in the cmt
branch.

A minimal Makefile (on Unix environments only), containing

include $(CMTROOT)/src/Makefile.header

include $(CMTROOT)/src/constituents.make

This Makefile does not need any further modification to build any of the constituents
managed by CMT . The intermediate makefile fragments will always be re-generated
transparently and automatically at build time. However (and thanks to this feature), this file
will not be modified anymore by CMT itself. Thus you may insert any particular make
statement you would feel appropriate, typically when you ask for operations that cannot be
taken into account by CMT .

A similar minimal NMake file (on Windows environments only), containing

!include $(CMTROOT)\src\NMakefile.header

!include $(CMTROOT)\src\constituents.nmake

the setup and cleanup scripts (one flavour for each shell family).
Onemay then setup this new package by running the setup script (which will not have much
effect yet since the requirements file is empty) :

sh> cd ~/mydev/Foo/v1/cmt
sh> . setup.sh

or

csh> cd ~/mydev/Foo/v1/cmt
csh> source setup.csh

or

8

dos> cd \mydev\Foo\v1\cmt
dos> call setup.bat

The FOOROOT and FOOCONFIG environment variables are defined automatically by this
operation.

It should be noted that running the setup script of a package is not always necessary for building
operations. The only situation where running this script may become useful, is when an
application is to be run, while requiring domain specific environment variables defined in one of
the used packages. Besides this particular situation, running the setup scripts may not be needed
at all.

Lastly, this newly created package may be removed by the quite similar remove command, using
exactly the same arguments as those used for creating the package.

csh> cd mydev
csh> cmt remove Foo v1
--
Removing package Foo version v1.
CMT version v1r14.
Root set to /home/arnault/mydev.
System is Linux-i686
--
Version v1 has been removed from /home/arnault/mydev/Foo
Package Foo has no more versions. Thus it has been removed.

or:

csh> cmt remove Foo v1 /ProjectB
--
Removing package Foo version v1.
CMT version v1r14.
Root set to /ProjectB.
System is Linux-i686
--
Version v1 has been removed from /ProjectB/Foo
Package Foo has no more versions. Thus it has been removed.

So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to work on an application or on a library for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of as follows:

csh> cd ~/mydev/Foo/v1/cmt
csh> cat >../src/FooTest.c
#include <stdio.h>

int main ()
{
 printf ("Hello Foo\n");
 return (0);
}

csh> vi requirements
...
application FooTest FooTest.c

9

csh> gmake
csh> source setup.csh
csh> FooTest.exe
Hello Foo

Directly running the application is possible since the application has been installed after being
built in an automatic installation area reachable through the standard PATH environment
variable

This can also be integrated in the build process by providing the -check option to the application
definition:

csh> cd ../cmt
csh> vi requirements
...
application FooTest -check FooTest.c
csh> gmake check
Hello Foo

 5 - Localizing a package
In the next sections, we’ll see that packages reference each other by means of use relationships.
Generally packages are found in different locations, according to the project - or sub-project -
they belong to. CMT provides a quite flexible mechanism for localizing the referenced packages.

A given version ofa given package is always referred to by using a use statement within its
 requirements file. This statement should specify the package through three keys :

its name (such as Bar)
its version (such as v7r5)
optionally its expected absolute location or relative prefix (also called the use path)

use Bar v7r5 [1]

or

use Bar v7r5 A [2]

or

use Bar v7r5 /ProjectB/A [3]

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order) :

1. the absolute access path, if the use path is absolute (case #3),
2. the access paths optionally registered in the configuration parameter - see below -

CMTPATH (and in decreasing priority, the first element being searched for first),
3. the default root.
4. the path where the current package is installed,

10

The configuration parameter CMTPATH can be specified either in the environment
variable named CMTPATH or in .cmtrc files, which can themselves be located either in the
current directory, in the home directory of the developper or in ${CMTROOT}/mgr . In the
Windows environment, this configuration parameter may also be installed as a Registry
under either the keys:

HKEY_LOCAL_MACHINE/Software/CMT/path
HKEY_CURRENT_USER/Software/CMT/path

(A graphical tool vailable in %CMTROOT%\VisualC\install.exe permits the interactive
modification of thislist)

If the path argument is specified as a relative path (case #2 above) (ie. there is no leading slash
character or it’s not a disk on windows machines), it will be used as an offset to each search case.
The search is done starting from the list specified in the CMTPATH configuration parameter,
then using the default root; and the offset is appended at each searched location.

The CMTPATH parameter is thus used as a search list for the packages, and the individual paths
are separated in this list by colons (semi-colons on Windows).

As an example, if we specify the CMTPATH parameter as follows :

csh> setenv CMTPATH /home/arnault/mydev:/ProjectB

sh> export CMTPATH=/home/arnault/mydev:/ProjectB

bat> set CMTPATH=/home/arnault/mydev;/ProjectB

or (in arequirements file)

path_append CMTPATH "/home/arnault/mydev"
path_append CMTPATH "/ProjectB"

or (in a.cmtrc file)

CMTPATH=/home/arnault/mydev:/ProjectB

Then a use statement (defined within a given package) containing :

...
use Bar v7r5
use BarA v1 A

(and assuming that the default root is/lal) would look for the packageBar from :
1. /home/arnault/mydev/Bar/v7r5/cmt
2. /ProjectB/Bar/v7r5/cmt
3. /lal/Bar/v7r5/cmt
4. the same path as the current package

Whereas the packageBarA would be searched from :
1. /home/arnault/mydev/A/BarA/v1/cmt
2. /ProjectB/A/BarA/v1/cmt
3. /lal/A/BarA/v1/cmt
4. the sub-directory A within thesame path as the current package,

The packages are searched assuming that the directory hierarchy below the access paths always

11

follow the convention :
1. there is a first directory level exactly named according to the package name (this is case

sensitive),
2. then (optionally) the next directory level is named according to the version tag,
3. then there is a branch named cmt ,
4. lastly there is a requirements file within this cmt branch.

Thus the list of access paths is searched for until these conditions are properly met.

The actual complete search list can always be visualized by the command:

> cmt show path
Add path /home/arnault/dev from CMTPATH
Add path /ProjectB from CMTPATH
Add path /lal from default path
#
/home/arnault/dev:/ProjectB:/lal

 6 - Managing site dependent features - The CMTSITE
environment variable

Software bases managed by CMT are often replicated to multiple geographically distant sites (as
opposed to machines connected through AFS-like WAN). In this kind of situation, some of the
configuration parameters (generally those used for instance to reference local installations of
external software) take different values.

The CMTSITE environment variable or registry in Windows environments, is entirely under the
control of the site manager and can be set up with a value representing the site (typical values
may be LAL , Virgo , Atlas , LHCb , CERN , etc.).

This variable, when set, corresponds to a tag which can be used to select different values for
make macros or environment variables.

A typical use for this tag is to build up actual values for the location path of an external software
package. Here we take the example of the Anaphe utility:

macro AnapheTOP "" \
 CERN "/afs/cern.ch/sw/lhcxx" \
 BNL "/afs/rhic/usatlas/offline/external/lhcxx" \
 LBNL "/auto/atlas/sw/lhcxx"

 7 - Configuring a package
The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file uniquely named requirements and installed in the cmt
branch of the package local tree.

An empty version of this file is automatically created the first time the package is installed, and
the package manager is expected to augment it with configuration specifications.

12

Many configuration parameters are supposed to be described into this requirements file - see the
detailed syntax specifications here - namely :

the package information about its author(s) and manager(s)
the relationships with other packages
the package constituents (libraries, applications, documents, etc.)
the policy patterns to be applied by clients of this package
the parameterization of the tools used in the build process (eg. make macros)
the parameterization of the run-time activity (eg. environment variables, search paths, etc.)

Generally, every such appropriate parameter will be deduced on demand from
the requirements file(s) through the various query functions available from the cmt main driver.
Therefore there is no systematic package re-configuration per se, besides the very first time a
package is newly installed in its location (using the cmt create action).

Query actions (generally provided using the cmt show ... family of commands) are embedded in
the various productivity tools, such as the setup shell scripts, or makefile fragment generators.

These query actions always interpret the set of requirements files obtained from the current
package and from the packages in the effective used chain. Symbols, tags and other definitions
are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Conversely one may say that parameters defined in a requirements file are meant to be exported
to the clients of the package.

Other configuration parameters are also optionally inserted from the HOME and USER context
 requirements files

Most typical examples of these query functions are:

cmt setup builds a shell command line for setting up environment variables
cmt show macros construct the effective set of inherited make macros
cmt show uses gives the ordered and flattened set of used packages
cmt show constituents lists the package’s constituents
cmt show path lists the effective search path for packages.
cmt show strategies shows the current setup of various functional CMT strategies.

 8 - Selecting a specific configuration
A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

the operating system (such as Linux , Windows , ...)
the platform (such as Intel , Compaq , Sun , etc...)
the choice of the compiler (such as g++ , egcs , CC , etc...)
options used for compiling (such as optimizer , debugger , etc...) or linking
the context specifications (selecting a particular version of a firmware, selecting a database
server, ...)
the site itself

13

Carefully describing this configuration is essential both for maintenance operations (so as to
remember the precise conditions in which the package was built) and when the development area
is shared between machines running different operating systems, or when a project has to be
deployed on several sites.

 8. 1 - Describing a configuration

CMT relies on several complementary conventions or mechanisms for this description and
the associated management. All these conventions rely on the concept of configuration tags
.

A tag is a symbol that describes one aspect of the configuration.
A tag can be active when the corresponding aspect of the configuration is true or
inactive otherwise
The set of active tags represents the complete configuration known by CMT, and can
be visualized with the cmt show tags command

1. Some aspects of the configuration - and the associated tags - are automatically deduced
from some standard environment variables that the user is expected to specify
(typically using shell commands):

CMTCONFIG describes the current settings for producing binary objects. One
default value is provided automatically by CMT, but generally project will
override it to apply specific conventions.

The default value is computed by CMT in the
${CMTROOT}/mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type
and the operating system type (using a mixing of the uname standard UNIX
command with various operating system specific definitions such as the AFS
based fs sysname command)

CMTSITE characterizes the current site. Its syntax is completely free

CMTEXTRATAGS may contain a space-separated list of additional tags to
systematically activate

Note that the CMTBIN variable which represents the current binary installation
of CMT itself does NOT correspond to any tag.

2. Some aspects of the configuration represents the implicit knowledge CMT gets of the
current context:

The value given by the uname standard Unix facility is always a valid
configuration tag. (eg. Linux)
The current major version id of CMT is a valid tag and takes the form CMTv<n>
(eg. CMTv1)

14

The current minor version id of CMT is a valid tag and takes the form CMTr<n>
(eg. CMTr14)
The current patch id of CMT is a valid tag and takes the form CMTp<n> (eg.
CMTp20030616)

3. User defined tags can be explicitly or implicitly activated:

explicitly from the cmt command line, using the -tag=<tag-list> option
explictly from requirements files using the apply_tag <tag> syntax
implicitly from requirements files using the tag association syntax, when a tag is
associated with an otherwise activated tag. One example is the Unix tag associated
by CMT itself with most Unix variants

The minimal tag set available from CMT can be visualized as follows (note that the exact
output will not necessarly be the one presented in this document according to the context
effectively used):

> cd ${CMTROOT}
> cmt show tags
CMTv1 (from CMTVERSION) [1]
CMTr14 (from CMTVERSION) [1]
CMTp20030616 (from CMTVERSION) [1]
Linux (from uname) package CMT implies [Unix] [2]
i386_linux24 (from CMTCONFIG) [3]
CERN (from CMTSITE) [4]
Default (from Default)
Unix (from package CMT) [5]

1. Implicit tags deduced from the current version of CMT
2. Implicit tag obtained from the uname command (note that there is an associated tag

defined here)
3. The current value of CMTCONFIG
4. The current value of CMTSITE
5. A indirectly activated tag (associated with another active tag)

 8. 2 - Defining the user tags

The user configuration tags can generally be specified though various complementary
means:

CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

sh> export CMTSITE=CERN

CMTSITE and CMTCONFIG can alternatively be specified using the set statement in a
requirements file

set CMTSITE "CERN"
set CMTCONFIG "${CMTBIN}" sun "Solaris-CC-dbg"

Additional tags may also be associated with other tags, using the tag statement (in a
requirements file):

15

tag newtag tag1 tag2 tag3

which means that:
newtag defines a tag
when newtag is active, then both tag1, tag2 and tag3 are simultaneously active

Tags may be declared as exclusive using the tag_exclude syntax.

tag_exclude debug optimized

This example implies that the two tags debug and optimized should never become
active simultaneously.

Tags are assigned priorities according to the way they have been defined. The priority
is particularly useful for specifying exclusion. The tag association promotes the priority
of the associated tags to the priority of the defining tag. The following decreasing
priorities are currently defined by CMT:

1. tag specified in the command line using the -tag=<tag-list>option
2. tag deduced from CMTCONFIG
3. tag defined in a requirements file using the tag syntax
4. tag deduced from CMTSITE
5. tag deduced from uname
6. tags deduced from the version of CMT

 8. 3 - Activating tags

By default, only CMTCONFIG,uname and CMTSITE (also named system tags) are active at
any time.

Then it is possible to activate alternate tags through the following arguments to any cmt
command:

-tag=<tag-list>

will cleanup the complete current tag set, and activate the new tags (the system tags are
restored).

-tag_add=<tag-list>

will add to the current tag set the tags specified in the comma separated list

-tag_remove=<tag-list>

will remove from the current tagset the tags specified in the comma separated list

Beware that giving these arguments generally make the selected tag set active only
during the selected command. Therefore two different CMT commands run with
different tag sets will generally yield different results. However it’s often useful to
persistify a tag set. This can be obtained by the following mechanisms:

1. Forcing a tag in a requirements file using the apply_tag syntax

16

Eg the following syntax installed in a requirements file will force the tag foo :

tag_apply foo

> cmt show tags
CMTv1 (from CMTVERSION)
CMTr14 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
Default (from Default)
foo (from package Foo)

2. Implying a tag from another one using the tag association syntax

tag Linux foo

> cmt show tags
CMTv1 (from CMTVERSION)
CMTr14 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname) package Foo implies [foo]
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
Default (from Default)
foo (from package Foo)

3. Through conventionally encoded values of CMTCONFIG

tag Linux-foo Linux foo

> export CMTCONFIG=Linux-foo
> cmt show tags
CMTv1 (from CMTVERSION)
CMTr14 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-foo (from CMTCONFIG) package Foo implies [Linux foo]
Default (from Default)
Linux-i686 (from package CMT) package CMT implies [Linux]
foo (from package Foo)

The current active tag set can always be visualized using the cmt show tags command.

> cmt show tags
CMTv1 (from CMTVERSION)
CMTr14 (from CMTVERSION)
CMTp0 (from CMTVERSION)
Linux (from uname)
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
Default (from Default)
> cmt -tag_add=tag1,tag2,tag3 show tags
CMTv1 (from CMTVERSION)
CMTr14 (from CMTVERSION)
CMTp0 (from CMTVERSION)

17

Linux (from uname)
Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
tag1 (from arguments)
tag2 (from arguments)
tag3 (from arguments)
Default (from Default)

Typical usages of those extra tags are:

when using special compiler options (e.g. optimization, debugging, ...)
for switching to different compilers (e.g. gcc versus the native compiler)
when one uses a special debugging environment such as Insure or Purify
when using special system specific features (such as whether one uses thread-safe
algorithms or not)

All symbol definitions providing specific values triggered by the active selectors will be
selected, such as in:

macro_append cppflags "" \
 debug " -g "

 9 - Working on a package
In this section, we’ll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are continuing the example of the Foo
package already used in this document.

 9. 1 - Working on a library

Let’s assume, as a first example, that the Foo package is originally composed of one library
libFoo.a itself made from two sources : FooA.c and FooB.c . A shared flavour of the library
libFoo.so or libFoo.sl or libFoo.dll) is also foreseen.

The minimal set of branches provided by CMT (once the cmt create operation has been
performed) for a package includes src for the sources and cmt for the Makefiles and other
scripts.

The various tools CMT provide will be fully exploited if one respects the roles these
branches have to play. However it is always possible to extend the default understanding
CMT gets on the package by appropriate modifiers (typically by overriding standard
macros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a software package.

We first have to create the two source files into the src branch (typically using our favourite
text editor). Then a description of the expected library (ie. built from these two source files)
will be entered into the requirements file. The minimal syntax required in our example will
be :

18

csh> cd ../cmt
csh> vi requirements (1)
library Foo FooA.cxx FooB.cxx

1. the requirements file located in the cmt branch of the package receives the
description of this library component. This is done using one library statement.

The cmt create command had generated a simple Makefile (or NMake file) which is
generaly sufficient for all standard operations, since CMT continuously and transparently
manages the automatic reconstruction of all intermediate makefile fragments. We therefore
simply and immediately execute gmake as follows:

...v1/cmt> gmake QUIET=1
------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Linux-i686.make [1]
setup.make ok
------> (constituents.make) Rebuilding library links
------> (constituents.make) all done
------> (constituents.make) Building Foo.make [2]
Library Foo
------> (constituents.make) Starting Foo
------> (Foo.make) Rebuilding ../Linux-i686/Foo_dependencies.make [3]
rebuilding ../Linux-i686/FooA.o
rebuilding ../Linux-i686/FooB.o
rebuilding library
------> Foo : library ok
------> Foo ok
Installing library libFoo.so into /home/arnault/mydev/InstallArea/Linux-i686/lib
installation done [4]
------> (constituents.make) Foo done
 all ok.
Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
gmake[2]: ‘all’ is up to date.

1. Some intermediate makefile fragments are automatically built to reflect the current
effective set of Makefile macros deduced from the configuration (read from the
 requirements file). These fragments are automatically rebuilt (if needed) each time
one of the requirements file changes.

2. Each component of the package (be it a particular library or a particular executable)
will have its own makefile fragment (named ../${CMTCONFIG}/<name>.[n]mak[e]
). This dedicated makefile takes care of filling up the library and creating the shared
library (on the systems where this is possible).

3. The directory which is used for the binaries (i.e. the results of compilation or the
libraries) has been automatically created by a generic target (dirs) which is defined
within [N]Makefile.header . A new binary directory will be created each time a new
value of the CMTCONFIG environment variable is defined or a tag is provided on the
command line to make .

4. An automatic installation mechanism is applied for all successfully built binaries.
or, for nmake:

...v1/cmt> nmake /f nmake

This mechanism relies on some conventional macros and incremental targets used within
the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It’s quite important to understand the list of possible customization macros, since

19

this is the main communication medium between CMT and the package manager. See the
complete table of those conventional macro when you want to interact with the standard
CMT behaviour.

 9. 2 - Working on an application

Assume we now want to add a test program to our development. Then we create a
FooTest.cxx source, and generate the associated makefile (specifying that it will be an
executable instead of a library) :

csh> cd ../src
csh> emacs FooTest.cxx
...
csh> cd ../cmt
csh> vi requirements
...
application FooTest FooTest.cxx

So that we may simply build the complete stuff by running :

> [g]make QUIET=1

------> (Makefile.header) Rebuilding constituents.make
------> (constituents.make) Rebuilding setup.make Linux-i686.make
setup.make ok
------> (constituents.make) Rebuilding library links
------> (constituents.make) all done
------> (constituents.make) Building Foo.make
Library Foo
------> (constituents.make) Starting Foo
------> Foo : library ok
------> Foo ok
installation done
------> (constituents.make) Foo done
------> (constituents.make) Building FooTest.make
Application FooTest
------> (constituents.make) Starting FooTest
------> (FooTest.make) Rebuilding ../Linux-i686/FooTest_dependencies.make
rebuilding ../Linux-i686/FooTest.o
rebuilding ../Linux-i686/FooTest.exe
------> FooTest ok
Installing application FooTest.exe into /home/arnault/mydev/InstallArea/Linux-i686/bin
installation done
------> (constituents.make) FooTest done
 all ok.
Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
gmake[2]: ‘all’ is up to date.

Which shows that a programFooTest.exe has been built from our sources. Assuming now
that this program needs to access theFoo library, we’ll just add the following definition in
the requirements file :

...
macro Foo_linkopts " -lFoo " \
 WIN32 " $(FOOROOT)/$(Foo_tag)/Foo.lib "
...

20

The Foo_linkopts conventional macro will be automatically inserted within the
use_linkopts macro. And the shared library location will be automatically set to the
installation areas.

It is also possible to select extra tag sets when running gmake as follows (in this example we
first cleanup the previous build and rebuild with debug options added to the compiler and
linker commands) :

> [g]make cleanup
> [g]make CMTEXTRATAGS=debug

Like all other make macros used to build a component, the Foo_linkopts will be specified
within the requirements which gives several benefits:

variants of the macro definition can be provided
monitoring features of CMT such as the cmt show macro Foo_linkopts command can
be used later on
macros defined this way may be later on inherited by client packages which will use
our package.

 9. 3 - Working on a test or external application

It is also possible to work on atest orexternal application, ie. when one does not wish to
configure the development for this application usingCMT . Even in this case, it is possible
to benefit from the packages configured usingCMT by partially usingCMT , just for used
relationships.

Here, no special convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to describe in a requirements file the
use relationships, as well as the make macro definitions, quite similarly to the package
entirely configured using CMT .

Most of the options provided by the cmt user interface are still available in these conditions.

 9. 4 - Construction of a global environment

A software base generally consists in many packages , some of them providing libraries or
documents , others providing applications , some providing both, some providing just glues
towards external software products.

On another view, this software base may a mix of packages shared between several projects
and sets of packages specific to various projects. One may have several software bases as
well (combined using the CMTPATH environment variable).

In such contexts, it is often desirable that a given project defines its own selection of all
existing packages. This can easily be done with CMT by defining a project package,
containing only use statements towards the appropriate selection of packages for this
particular project.

21

Let’s consider as an example the project named MyProject . We may create the package
named MyProject similarly to any other package :

csh> cd
csh> cmt create MyProject v1 /ProjectB

Then the requirements file of this new package will simply contain a set of use
statements, defining the official set of validated versions of the packages required for the
project. This mechanism also represents the notion of global release traditionally addressed
in configuration management environments

package MyProject

use Cm v7r6
use Db v4r3
use El v4r2
use Su v5
use DbUI v1r2 Db
use ElUI v1r1 El
use VSUUI v3 Su/VSU
use VMM v1
use VPC v3

Then any user wanting to access the so-called official release of the package set appropriate
to the project MyProject will simply do (typically within its login shell script) :

a login script

...

source /ProjectB/MyProject/v1/cmt/setup.csh

Later on, future evolutions of the MyProject package will reflect progressive integration
steps, which validate the evolutions of each referenced package.

10 - Defining a document generator
In a Unix environment, documents are built using make (well generally its gnu flavour) or
nmake in Windows environments. The basic mechanism provided in CMT relies on make
fragment patterns containing instructions on how to rebuild document pieces. Many such
generators are provided by CMT itself so as to take care of of the most usual cases (e.g.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones provided by CMT . This
mechanism is very similar to the definition or re-definition of macros or environment variables in
that every new generator has to be first declared in a requirements file belonging to a package (
CMT actually declares all its default generators within its requirements file), allowing all its
client packages to transparently acquire the capacity to generate documents of that sort.

CMT manages two categories of constituents:
1. Applications and Libraries are handled using pre-defined make fragments (mainly related

with languages) and behaviour.
2. Documents offer a quite general framework for introducing completely new behaviours

22

through user-defined make fragments. This includes actually generating documents, but also
simply performing an operation (in which case sometimes no real document is produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types.

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes named "document-style"), which
corresponds to a dedicated make fragment of that name. Then, when specified in a document
statement, this make fragment will be instanciated once or several times (typically once per
source file) to construct a complete and functional make fragment, containing one main target.
Both the resulting make fragment and the make target will have the name of the constituent.

10. 1 - An example : the tex document-style

This section discusses one simple example (the production of postscript from latex files)
available in the standard CMT distribution kit.

Converting a latex source file into a postcript output implies to chain two text processors,
with an intermediate dvi format.

The fragment described here exactly performs this sequence, taking care of intermediate file
deletion. The document style is named "tex" (the associated fragment shown here and
named "tex" is actually provided by CMT itself, and can be looked at in
${CMTROOT}/fragments/tex .) :

============ tex =====================================
${CONSTITUENT} :: ${FILEPATH}/${NAME}.ps

${FILEPATH}/${NAME}.dvi : ${FULLNAME}
 cd ${doc}; latex ${FULLNAME}

${FILEPATH}/${NAME}.ps : ${FILEPATH}/${NAME}.dvi
 cd ${doc}; dvips ${FILEPATH}/${NAME}.dvi

${CONSTITUENT}clean ::
 cd $(doc); /bin/rm -f ${FILEPATH}/${NAME}.ps ${FILEPATH}/${NAME}.dvi

==

They are declared in the CMT ’s requirements file as follows :

make_fragment tex -header=tex_header

where:

1. "tex" represents both the fragment name and the document style.

2. the -header=tex_header option indicates that the generated makefile fragment
will first include this header (which is actually an empty file in this case)

23

A user package willing to apply this behaviour will have to include in
its requirements file a statement similar to the following:

document tex MyDoc -s=../doc doc1.tex doc2.tex

where:
1. The first parameter "tex" is the document-style
2. The second parameter "MyDoc" is used for building the constituent’s makefile

(under the name MyDoc.make) and for providing the make target "MyDoc".
3. The other parameters (doc1.tex and doc2.tex) are the sources of the document.

Explicit location is required (since default is currently defined to be ../src)
4. The constituent’s makefile MyDoc.make is built as follows :

1. Install a copy of the $CMTROOT/fragments/make_header generic
fragment

2. Install a copy of the $CMTROOT/fragments/tex_header fragment
3. For each of the sources, install a copy of the fragment "tex"
4. Install a copy of the $CMTROOT/fragments/cleanup_header fragment

The result for our example is:

=========== MyDoc.make ===============================

#====================================
Document MyDoc

Generated by

#====================================

help ::
@echo ’MyDoc’

doc1_dependencies = ../doc/doc1.tex
doc2_dependencies = ../doc/doc2.tex

MyDoc :: ../doc/doc1.ps

../doc/doc1.dvi : $(doc)doc1.tex
 cd ${doc}; latex $(doc)doc1.tex

../doc/doc1.ps : ../doc/doc1.dvi
 cd ${doc}; dvips ../doc/doc1.dvi

MyDocclean ::
 cd $(doc); /bin/rm -f ../doc/doc1.ps ../doc/doc1.dvi

MyDoc :: ../doc/doc2.ps

../doc/doc2.dvi : $(doc)doc2.tex
 cd ${doc}; latex $(doc)doc2.tex

../doc/doc2.ps : ../doc/doc2.dvi
 cd ${doc}; dvips ../doc/doc2.dvi

MyDocclean ::
 cd $(doc); /bin/rm -f ../doc/doc2.ps ../doc/doc2.dvi

clean :: MyDocclean

24

 cd .

MyDocclean ::
==

10. 2 - How to create and install a new document style

This section presents the general framework for designing a document generator.

1. Select a name for the document style. It should not clash with existing ones (use the
cmt show fragments for a complete list of document types currently defined).

2. A fragment exactly named after the document style name must be installed into a
subdirectory named fragments below the cmt branch of a given package (which
becomes the provider package).

3. Optionally, two other fragments may be installed into the same subdirectory, one of
them will be the header of the generated complete fragment, the other will be its trailer

4. Those fragments must be declared in the requirements file of the provider package as
follows:

make_fragment <fragment-name> [options...]

where options may be :

-suffix=<suffix> provide the suffix of the output files (without the dot)

-header=<header>
provide another make fragment meant to be prepended to the
constituent’s make fragment.

-trailer=<trailer>
provide another make fragment meant to be appended to the
constituent’s make fragment.

-dependencies
install the automatic generation of dependencies into the constituent’s
make fragment

Once a fragment is installed and declared, it may be used by any client package (ie a
package using the provider), and queried upon using the command

> cmt show fragment <fragment name>

which will show where this fragment is defined (ie. in which of the used packages).

The cmt show fragments commands lists all declared fragments.

If a package re-defines an already declared make fragment, ie it provides a new copy of the
fragment (possibly with new copies of the header and the trailer), and declares it inside its
requirements file, then this package becomes the new provider for the document style.

25

For building a fragment, one may use pre-defined generic "templates" (which will be
substituted when a fragment is copied into the final constituent’s makefile).

CONSTITUENT the constituent name

CONSTITUENTSUFFIX the optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)

FILENAME the complete source file name (only including the suffix)

NAME the short source file name (without directory and suffix)

FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

OBJS
(only available in headers) the list of outputs, formed by a set of
expressions :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

Templates must be enclosed between ${ and } or between $(and) and will be substituted at
the generation time. Thus, if a fragment contains the following text :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

then, the expanded constituent’s makefile will contain (refering to the "tex" example)

$(MyDoc_output)doc1.ps

Which shows that make macros may be dynamically generated.

26

3 - The architecture of document generation.

10. 3 - Examples

1. rootcint

It generates C++ hubs for the Cint interpreter in Root.

========= rootcint ===
(src){NAME}.cc :: ${FULLNAME}
 ${rootcint} -f (src){NAME}.cc -c ${FULLNAME}
==

2. agetocxx and agetocxx_header.

It generates C++ source files (xxx.g files) from Atlas’ AGE description files.

========= agetocxx ===
output=$(${CONSTITUENT}_output)

$(output)${NAME}.cxx : $(${NAME}_cxx_dependencies)
 (echo ’#line 1 "${FULLNAME}"’; cat ${FULLNAME}) > /tmp/${NAME}.gh.c
 gcc -E -I$(output) $(use_includes) -D_GNU_SOURCE \
 cd ${output}; $(agetocxx) -o ${NAME} -ohd ${FILEPATH} \
 -ohp ${FILEPATH} /tmp/${NAME}.gh
 rm -f /tmp/${NAME}.gh /tmp/${NAME}.gh.c
 cd $(bin); $(cppcomp) $(use_cppflags) $(${CONSTITUENT}_cppflags) \
 $(${NAME}_cppflags) ${ADDINCLUDE} $(output)${NAME}.cxx
 cd $(bin); $(ar) $(${CONSTITUENT}lib) ${NAME}.o; /bin/rm -f ${NAME}.o
==

27

========= agetocxx_header ==================================
${CONSTITUENT}lib = $(bin)lib${CONSTITUENT}.a
${CONSTITUENT}stamp = (bin){CONSTITUENT}.stamp
${CONSTITUENT}shstamp = (bin){CONSTITUENT}.shstamp

${CONSTITUENT} :: dirs ${CONSTITUENT}LIB
 @/bin/echo ${CONSTITUENT} ok

${CONSTITUENT}LIB :: $(${CONSTITUENT}lib) $(${CONSTITUENT}shstamp)
 @/bin/echo ${CONSTITUENT} : library ok

$(${CONSTITUENT}lib) $(${CONSTITUENT}stamp) :: ${OBJS}
 $(ranlib) $(${CONSTITUENT}lib)
 cat /dev/null >$(${CONSTITUENT}stamp)

$(${CONSTITUENT}shstamp) :: $(${CONSTITUENT}stamp)
 cd $(bin); $(make_shlib) $(tag) ${CONSTITUENT} \
 $(${CONSTITUENT}shlibflags); \
 cat /dev/null >$(${CONSTITUENT}shstamp)

==

It must be declared as follows :

make_fragment agetocxx -suffix=cxx -dependencies -header=agetocxx_header

11 - The tools provided by CMT
The set of conventions and tools provided byCMT is mainly composed of :

the syntax of the requirements file,
and the general cmt user interface, available in the mgr branch of the CMT package.

Thesetup script found in theCMT installation directory actually adds its location to the definition
of the standardUNIX PATH environment variable in order to give direct access to the maincmt
user interface.

The sections below will detail the complete syntax of the requirements file since it is the basis
of most information required to run the tools as well as the main commands available through the
cmt user interface.

11. 1 - The requirements file

11. 1. 1 - The general requirements syntax

A requirements file is made of statements , each describing one named
configuration parameter.

Statements generally occupy one single line, but may be split into several lines
using the reverse-slash character (in this case the reverse-slash character must be
the last character on the line or must be only followed by space characters).

28

Each statement is composed of words separated with spaces or tabulations.

The first word of a statement is the name of the configuration parameter.

The rest of the statement provides the value assigned to the configuration
parameter.

Words composing a statement are separated with space or tab characters. They
may also be enclosed in quotes when they have to include space or tab characters.
Single or double quotes may be freely used, as long as the same type of quote is
used on both sides of the word.

Special characters (tabs, carriage-return and line-feed) may be inserted into the
statements using an XML-based convention:

tabulation <cmt:tab/>

carriage-return <cmt:cr/>

line-feed <cmt:lf/>

Comments : they start with the # character and extend up to the end of the current
line.

The complete syntax specification is available inAppendix .

11. 2 - The concepts handled in the requirements file

11. 2. 1 - The package structuring style

11. 2. 2 - Meta-information : author, manager

The author and manager names

11. 2. 3 - package, version

The package name and version. These statements are purely informational.

11. 2. 4 - Constituents : application, library, document

Describe the composition of a constituent. Application and library correspond to the
standard meaning of an application (an executable) and a library, while document
provides for a quite generic and open mechanism for describing any type of document
that can be generated from sources.

29

Applications and libraries are assigned a name (which will correspond to a generated
make fragment, and a dedicated make target).

A document is first associated with a document type (which must correspond to a
previously declared make fragment). The document name is then used to name a
dedicated make fragment and a make target.

Various options can be used when declaring a constituent:

option validity usage

-windows applications
When used in a Windows environment,
generates a GUI-based application (rather
than a console application)

-no_share libraries do not generate the shared library

-no_static libraries
do not generate the static library (not yet
implemented)

-prototypes
applications,
libraries

do generate the prototype header files

-no_prototypes
applications,
libraries

do not generate the prototype header files

-check applications
generate a check target meant to execute the
rebuilt application

-group=group-name any
install the constituent within this group
target

-suffix=suffix
applications,
libraries

provide a suffix to names of all object files
generated for this constituent (1)

-import=package
applications,
libraries

explicitly import for this constituent the
standard macros from a package that has the
-no_auto_imports option set

variable-name=variable-valueany
define a variable and its value to be given to
the make fragment (2)

1.

When several constituents need to share source files, (a typical example is for
building different libraries from the same sources but with different compiler
options), it is possible to specify an optional output suffix with the
-suffix=<suffix> option. With this option, every object file name will be
automatically suffixed by the character string " <suffix> ", avoiding name
conflicts between the different targets, as in the following example:

library AXt -suffix=Xt *.cxx
library AXaw -suffix=Xaw *.cxx

30

2.

It’s possible to specify in the list of parameters one or more pairs of
variable-name = variable-value (without any space characters around the "="
 character), such as in the next example:

make_fragment doc_to_html (1)

document doc_to_html Foo output=FooA.html FooA.doc (2) (3)

1. This makefile fragment is meant to contain some text conversion actions and
defines a document type named doc_to_html .

2. This constituent exploits the document type doc_to_html to convert the
source FooA.doc into an html file.

3. The user defined template variable named output is specified and assigned
the value FooA.html . If the fragment doc_to_html contains the string
${output} , then it will be substituted to this value.

11. 2. 5 - Groups

Groups permit the organization of the constituents that must be consistently built at the
same development phases or with similar constraints.

Each group is associated with a make target (of the same name) which, when used in
the make command, selectively rebuilds all constituents of this group.

The default group (into which all constituents are installed by default) is named all ,
therefore, running make without argument, activates the default target (ie. all).

As a typical usage of this mechanism, one may examplify the case in which one or
several constituents are making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might require a controled re-build.
This is especially useful for having these constituents only rebuilt on demand rather
than rebuilt automatically when the default make command is run.

One could, for instance specify within the requirements file :

Constituents belonging to the default all group

... constituents without group specification ...

Constituents belonging to specific groups

library Foo-objy -group=objy < sources making use of Objectivity >

application FooGUI -group=graphics < sources making use of Qt >
application BarGUI -group=graphics < sources making use of Qt >

(Beware of the position of the -group option which must be located after the constituent
name. Any other position will be misunderstood by CMT)

31

Then, running gmake all would only rebuild the un-grouped constituents, whereas
running

> gmake objy
> gmake graphics

in the context of the Foo package would rebuild objy related or graphics related
constituents.

11. 2. 6 - Languages

Some computer languages are known by default byCMT (C ,C ++,Fortran77 ,Java ,
lex ,yacc). However it is possible to extend this knowledge to any other langage.

We consider here languages that are able to produce object files from sources.

Let’s take an example. We would like to install support for Fortran90. We first have to
declare this new language support to CMT within the requirements file of one of our
packages (Notice that it’s not at all required to modify CMT itself since all clients of
the selected package will inherit the knowledge of this language).

The language support is simply named fortran90 and is declared by the following
statement:

language fortran90 \
 -suffix=f90 -suffix=F90 \ [1]
 -linker=$(f90link) \ [2]
 -preprocessor_command=$(ppcmd)

1. The recognized suffixes for source files will be f90 and F90
2. The linker command used to build a Fortran90 application is described inside the

macro named f90link (which must defined in this requirements file but which can
also be overridden by clients)

The language support being named fortran90 , two associated make fragments are
expected, one under the name fortran90 (for building application modules), the other
with the name fortran90_library (for modules meant to be archived), both without
extension.

These two fragments should be installed in the fragments sub-directory of the cmt
branch of our package.

Due to the similarity of the example to fortran77, we may easily provide the expected
fragments simply by copying the f77 fragments found in CMT (thus the fragments
${CMTROOT}/fragments/fortran and ${CMTROOT}/fragments/fortran_library

These fragments make use of the fcomp macro, which holds the fortran77 compiler
command (through the for macro).

macro for "f77" \
...
macro fcomp "$(for) -c $(fincludes) $(fflags) $(pp_fflags)"

32

We therefore simply replace these macros by new macros named f90comp and f90 ,
defined as follows:

macro f90 "f90"
...
macro f90comp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

Some languages (this has been seen for example in the IDL generators in Corba
environments) do provide several object files from one unique source file. It is possible
to specify this feature through the (repetitive) -extra_output_suffix option like in:

language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

where, in this case, two object files are produced for each IDL source file, one named <
name >.o the other named < name >_skel.o .

11. 2. 7 - Symbols

The alias keyword is translated into a shell alias definition,

The set keyword is translated into an environment variable definition.

The macro keyword is translated into a make ’s macro definition.

The path keyword is translated into a path -like environment variable, which is
supposed to be composed of search paths separated with colon characters ’:’ (on Unix)
or semi-colon characters ’;’ (on Windows). However, it is highly recommended to
construct such a variable by iteratively concatenating individual items one by one using
path_append or path_prepend

Variants of these keywords are also provided for modifying already defined symbols.
This generally happens when a package needs to modify an inherited symbol (ie. which
has been already defined by a used package). Through the keywords set_append ,
set_prepend , set_remove , macro_append , macro_prepend , macro_remove ,
macro_remove_all , path_append , path_prepend , path_remove one can append or
prepend a text to the existing symbol value or remove a part from it. The path_remove
keyword removes all individual search paths that contain the specified sub-string.

The translations occur while running either the setup scripts (for alias, set or path) or
the make command (for macro).

All these definitions follow the same pattern:

symbol : symbol-type symbol-name default-value [tag value ...]

The symbol-name identifies the symbol for modification operations. The default-value
is optionally followed by a set of tag/value pairs, each representing an alternate value
for this symbol. Be aware that there is only one name space for all kinds of symbols.
Therefore, if a symbol was originally defined using amacro statement, using
set_append to modify it will produce an undefined result.

33

The tag is used to select one alternate value to replace the default value, when one of
the following condition is met:

It matches the value of the CMTSITE environment variable (or registry)
It matches the value provided by the uname Unix command (when available)
It matches the value of the CMTCONFIG environment variable (or registry)
It matches the value specified in the -tag= tag argument to the cmt command.
It matches one user defined tag (see the tag keyword) which itself is associated
with a matching tag (Note that this is a recursive definition).

Examples of such definition are :

package CMT

macro cflags "" \
 LynxOS-VGPW2 "-X" \
 insure "-std1" \
 HP-UX "+Z" \
 hp700_ux101 "-fpic -ansi" \
 alpha "-std1" \
 alphat "-std1" \
 SunOS "-KPIC" \
 WIN32 ’/nologo /DWIN32 /MD /W3 $(includes) /c’

macro pp_cflags "" \
 LynxOS-VGPW2 "-DVGPW2" \
 HP-UX "-D_HPUX_SOURCE" \
 alphat "-DCTHREADS" \
 AIX "-D_ALL_SOURCE -D_BSD" \
 Linux "-Di586"

macro ccomp "$(cc) -c $(includes) $(cdebugflags) $(cflags) $(pp_cflags)" \
 VisualC "cl.exe $(cdebugflags) $(cflags) $(pp_cflags)"

macro clinkflags ""

macro clink "$(cc) $(clinkflags)" \
 VisualC "link.exe /nologo /machine:IX86 "

11. 2. 8 - use

Describe the relationships with other packages; the generic syntax is :

use <package> [<version> [<root>]]

Omitting the version specification means that the most recent version (ie. the one with
highest ids) that can be found from the search path list will be automatically selected.

The root specification can be relative (ie. on Unix it does not contain a leading ’/’
character). In this case, this prefix is systematically considered when the package is
looked for in the search path list. But it can also be absolute (ie. with a leading ’/’
character on Unix), in which case this path takes precedence over the standard search
path list (see CMTPATH).

Examples of such relationships are :

34

Packages installed in the default root :
use OnX v5r2
use CSet v2r3
use Gb v2r1

A package installed in a root one step below the root :
use CS v3r1 virgo

Back to the default root :
use Cm v7r3

Get the most recent version of CERNLIB
use CERNLIB

By default, a set of standard macros, which are expected to be specified by used
packages, is automatically imported from them (see the detailed list of these macros).
This automatic feature can be discarded using the
-no_auto_imports option to the use statement, or re-activated using the
-auto_imports . When it is discarded, the macros will not be transparently inherited,
but rather, each individual constituent willing to make use of them will have to
explicitly import them using the -import=< package > option .

When a use statement is in a private section, the corresponding used package will only
be reached if when CMT operations occur in the context of the holder package.
Otherwise (ie if the operation occurs in some upper level client package, then this
privately used package will be entirely hidden. (This behaviour follows a very similar
pattern to the private or public inheritance of C++). Suppose we have the following
organization:

package A

use B v1
use D v1

package B

private
use C v1
use D v1

all operations done in the context of package B will see both packages C and D
all operations done in the context of package A will see both packages B and D,
but not package C

11. 2. 9 - patterns

Often, similar configuration items are needed over a set of packages (sometimes over
all packages of a project). This reflects either similarities between packages or generic
conventions established by a project or a team.

35

Typical examples are the definition of the search path for shared libraries (through the
LD_LIBRARY_PATH environment variable), the systematic production of test
applications, etc.

The concept of pattern proposed here implements this genericity. Patterns may be
either global , in which case they will be systematically applied onto every package, or
local (the default) in which case they will be applied on demand only by each package.

The general principle of a pattern is to associate a templated (set of) cmt statement(s)
with the pattern name. Then every time the pattern is applied, its associated statements
are applied as if they were directly specified in the requirements file, replacing the
template with its current value. If several statements are to be associated with a given
pattern, they will be separated with the " ; " separator pattern (beware of really
enclosing the ";" between two space characters).

The general syntax for defining a pattern in a requirements file is:

pattern : pattern [-global] pattern-name cmt-statement

 [; cmt-statement ...]

Pattern templates are names enclosed between the ’<’ and ’>’ characters. A set of
predefined templates are automatically provided by CMT :

package the name of the current package

PACKAGE the name of the current package in upper case

version the version tag of the current package

path the access path of the current package

Then, in addition, user defined templates can be installed within the pattern definitions.
Their actual value will be provided as arguments to the apply_pattern statement.

User defined templates that have not been assigned a value when the pattern is applied
are simply ignored.

Some examples:

1. Changing the standard include search path.

The standard include path is set by default to ${<package>_root}/src . However,
often projects need to override this default convention, and typical example is to
set it to a branch named with the package name. This convention is easily applied
by defining a pattern which will apply the include_path statement as follows:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a package named PackA will expand this pattern as follows:

36

include_path ${PackA_root}/PackA/

2. Providing a value to the LD_LIBRARY_PATH environment variable

On some operating systems (eg. Linux), shared library paths must be explicited,
through an environment variable. The following pattern can automate this
operation:

pattern ld_library_path \
path_remove LD_LIBRARY_PATH "/<package>/" ; \
path_append LD_LIBRARY_PATH ${<PACKAGE>ROOT}/${CMTCONFIG}

In this example, the pattern was not set global, so that only packages actually
providing shared libraries would be concerned. These packages will simply have
to apply the pattern as follows:

apply_pattern ld_library_path

The schema installed by this pattern provides first a cleanup of the
LD_LIBRARY_PATH environment variable and then the new assignment. This
choice is useful in this case to avoid conflicting definitions from two different
versions of the same package.

3. Installing a systematic test application in all packages

Quality assurance requirements might specify that every package should provide a
test program. One way to enforce this is to build a global pattern declaring this
application. Then every make command would naturally ensure its actual
presence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern (<other_sources>) permits the package to
specify extra source files to the test application (the pattern assumes at least one
source file<package>test.cxx).

11. 2.10 - cmtpath_patterns

Those patterns act quite similarly to the patterns previously described, ie they defines a
set of CMT statements to be applied in a generic way.

The only varying parameter that can be specified here is the token<path>which stands
for any entry in the CMTPATH list.

Therefore whenever a cmtpath_pattern is defined and if it specifies the
expression<path>in its definition, then an implicit loop over all entries of the
CMTPATH list will be run and one instance of the pattern will be applied for each
entry in the CMTPATH list.

As an example suppose we define

37

path CMTPATH "/ProjectA"
path_append CMTPATH "/ProjectB"

cmtpath_pattern \
 macro_prepend pp_cppflags " -I<path>/InstallArea/include "

this will assemble one -I option (towards the preprocessor) per entry in CMTPATH,
implementing a mechanism for a multiple installation area for header files. In the
example above the resulting macro will be

 -I/ProjectA/InstallArea/include -I/ProjectB/InstallArea/include

11. 2.11 - branches

Describe the specific directory branches to be added while configuring the package.

branches <branch-name> ...

These branches will be created (if needed) at the same level as the cmt branch. Typical
examples of such required branches may be include , test or data .

11. 2.12 - Strategy specifications

Users can control the behaviour of CMT through a set of strategy specifications. The
current implementation provides such control over several aspects :

1. The version strategy

the way version tags are interpreted and compared to each other.

The following keywords are available:

best_fit
This is the default behaviour. Version tags truely consider major
ids, minor ids and patch ids with their complete backward
compatibility semantics

best_fit_no_check
Same as best_fit except that different major ids are not seen as
incompatible. The greatest id (for major, minor and patch ids) is
always selected

first_choice The first version tag specified in the use chain is selected

last_choice The last version tag specified in the use chain is selected

keep_all Internal use only : all referenced versions are kept

2. The build strategy

38

This controls and parameterized the building process the way makefile fragments
used for applications and libraries.

The following keywords are available:

prototypes
C source files will automatically produce a header file
containing a prototype of all global entry points

no_prototypes No production of automatic prototype header files for C sources

with_install_area
The installation area mechanisms are activated. This implies
applying the cmtpath_patterns that may be defined (eg in CMT
itself)

without_install_area The installation area mechanisms are inhibited

3. The setup strategy

This controls various actions that may be performed during the sourcing of the
setup scripts.

The following keywords are available:

config
An environment variable <PACKAGE>CONFIG will be generated for all
packages in the dependency chain

no_config The<PACKAGE>CONFIG environment variable is not generated

root
An environment variable <PACKAGE>ROOT will be generated for all
packages in the dependency chain

no_root The<PACKAGE>ROOT environment variable is not generated

cleanup
The automatic cleanup operation to the current installation area is
launched

no_cleanup
The automatic cleanup operation to the current installation area is not
launched

11. 2.13 - setup_script, cleanup_script

Specify user defined configuration scripts, which will be activated together with the
execution of the main setup and cleanup scripts.

The script names may be specified without any access path specification, in this case,
they are looked for in the cmt or mgr branch of the package itself. They may also be
specified without any .csh or .sh suffix, the appropriate suffix will be appended
accordingly when needed. Therefore, when such a user configuration script is specified,
CMT expects that thecorresponding shell scripts actually exist in the appropriate
directory (the cmt branch by default) and is provided in whatever format is appropriate
(thus suffixed by .csh and/or .sh).

39

11. 2.14 - include_path

Override the specification for the default include search path, which is internally set to
${< package >_root}/src.

Specifying the value none (a reserved CMT keyword) means that no default include
search path is expected from CMT, and thus no -I compiler option will be generated by
default (generally this means that user include search paths should be specified via
include_dirs instead).

11. 2.15 - include_dirs

Add specifications for non-standard include access paths.

11. 2.16 - make_fragment

This statement specifies a specialized makefile fragment, used as a building brick to
construct the final makefile fragment dedicated to build the constituents.

There are basically three categories of such fragments :
1. some are provided by CMT itself (they correspond to its internal behaviour)
2. others handle the language support
3. and the last serve as specialized document generators.

The fragments defined in CMT can be:

those used to construct the application or library constituents. Their semantic is
standardized (they are all associated with a language statement in the CMT
requirements file).

c c_library cpp cpp_library lex lex_library fortran fortran_library yacc
yacc_library jar jar_header java java_copy java_header check_java
cleanup_java

those used internally by CMT as primary building blocks for assembling the
makefile. (Generally developers should not see them).

cleanup_objects application make_setup_nmake constituent
application_header constituents_header buildproto protos_header
os9_header dependencies check_application dependencies_and_triggers
check_application_header document_header library cleanup library_header
cleanup_application library_no_share cleanup_header make_header
make_setup cleanup_library make_setup_header

40

some document generators which may be used if needed, but are not mandatory:

installer installer_header readme readme_header readme_trailer
readme_use dvi tex generator generator_header

those used to generate configuration files for MSVisualC++:

dsp_windows_header dsw_all_project dsw_all_project_dependency
dsw_all_project_header dsw_all_project_trailer dsw_header dsw_project
dsw_trailer dsp_all dsp_application_header dsp_contents
dsp_library_header dsp_shared_library_header dsp_trailer

Language fragments should provide two forms, one for the applications (in which case
they are named exactly after the language name eg c, cpp, fortran) and the other for the
libraries (in which case they have the _library suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++, Fortran, Java, Lex, Yacc) is
provided by CMT itself but it is expected that projects add new languages according to
their needs. Event if the make fragment meant to be the implementation of a language
support is declared, the language support itself must be declared too, using the
language statement

All make fragments are provided as (suffixless) files which must be located in the
fragments sub-directory inside the cmt/mgr branch of one package. They must also be
declared in the requirements file (through the make_fragment statement) so as to be
visible.

A package declaring, and implementing a make fragment may override a fragment of
the same name when it is already declared by a used package. This implies in particular
that any package may freely override any make fragment provided by CMT itself
(although in this case a deep understanding of what the original fragment does is
recommended).

Makefile fragments may take any form convenient to the document style, and some
special pre-built templates (see the appendix) can beused in their body to represent
running values, meant to be properly expanded at actual generation time :

CONSTITUENT the constituent name

FULLNAME the full source path

FILENAME the source file name without its path

NAME the source file name without its path and suffix

FILESUFFIX the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

41

11. 2.17 - public, private

Introduce a section for public or private statements. This only concerns the definition
of symbols or the specification of use relationships.

Symbols are the environment variables or aliases in a Unix environment or as logical
names or symbols in a VMS one). Macros to be used within makefiles can also be
defined at this level. Public symbols are meant to be exported to any external user of
the package whereas private ones are only defined for the package developper .
Currently the selection between these two categories is done when the setup script is
executed : if it is executed while actually being in the cmt branch of the package, the
developper category is assumed. If the script is executed from another directory the
user category is assumed.

Public use relationships expose the complete sub-tree to the package clients, whereas
private ones entirely hide the sub-tree, expanding it only when the operator really acts
from within the context of the package. It should be noticed that private use
relationships are completely unvisible from clients, which implies that none of the
definitions (not only symbols) will be set.

However, the cmt broadcast command is configured to always ignore the private
specification and will traverse the sub-trees whether they are public or private (in order
to ensure the hierarchy dependencies)

11. 2.18 - tag

Provide tag definitions.

A tag is a token which can be used to select particular values of symbols. Generally a
tag need not being explicitly declared, since the reference to it will declare the tag
automatically. However, tags may be used to name a particular association of several
other tags. In this case, this association must be declared within a requirements file as
follows :

tag <association-tag-name> <tag1> <tag2> ...

eg:

tag Linux-gcc Linux gcc

This definition implies that when Linux-gcc is true, then both Linux and gcc are true.

This can be exploited to trigger via only one tag, the activation of several individual
tags, each signing a particular condition (in our example the debug condition and the
Linux environment).

However, it is always possible to dynamically associate several tags by using the
tag-list -style of arguments to the -tag=<tag-list>options to the cmt command driver
(such as in cmt setup -tag=Linux,debug)

42

Tags or associations of tags are propagated using the -tag=<tag-list>options to the cmt
command driver, but the Make command can also accept them through the
conventional macros $(tag) and $(extra_tags) . However, the $(tag) macro itself can
only accept one value (instead of a list), and therefore in order to give a list of
additional tags, one should use the $(extra_tags) (such as in gmake tag=Linux
extra_tags=debug)

Finally, running the setup script (through the source setup.[c]sh or call setup.bat
command) can also receive tag specifications using the -tag=tag-list options.

11. 3 - The general cmt user interface

This utility (a shell script combined with aC application) provides a centralised access to
various commands to theCMT system. The first way to usecmt is to run it without
argument, this will print a minimal help text showing the basic commands and their syntax :

> cmt command [option...]
command :
broadcast [-select=list] [-exclude=list] [-local] [-depth=n]
 [-global] [-begin=pattern]
 [-all_packages] <command> : apply a command to [some of] the used packages
build <key> : build various components :
 constituent_makefile : generate Makefile
 constituents_makefile : generate constituents.make
 dependencies : generate dependencies
 library_links : build symbolic links towards all imported libraries
 make_setup : build a compiled version of setup scripts
 msdev : generate MSDEV files
 os9_makefile : generate Makefile for OS9
 prototype : generate prototype file
 readme : generate README.html
 tag_makefile : generate tag specific Makefile

check <key> : perform various checks
 configuration : check configuration
 files <old> <new> : compare two files and overrides <old> by <new> if different
 version <name> : check if a name follows a version tag syntax
check_files <old> <new> : compare two files and overrides <old> by <new> if different
checkout : perform a cvs checkout over a CMT package
co : perform a cvs checkout over a CMT package
cleanup [-csh|-sh|-bat] : generate a cleanup script
config : generate setup and cleanup scripts
create <package> <version> [<path>] : create and configure a new package
filter <in> <out> : filter a file against CMT macros and env. variables
help : display this help
lock : lock the current package
lock <package> <version> [<path>] : lock a package
remove <package> <version> [<path>] : remove a version of a package
remove library_links : remove symbolic links towards all imported libraries
run <command> : apply a command
setup [-csh|-sh|-bat] : generate a setup script
show <key> : display various infos on :
 all_tags : all defined tags
 applied_patterns : all applied patterns in this package
 author : package author
 branches : added branches
 clients : package clients
 constituent_names : constituent names
 constituents : constituent definitions
 cycles : cycles in the use graph
 uses : the use tree
 fragment <name> : one fragment definition

43

 fragments : fragment definitions
 groups : group definitions
 languages : language definitions
 macro <name> : a formatted macro definition
 macro_value <name> : a raw macro definition
 macros : all macro definitions
 manager : package manager
 packages : packages reachable from the current context
 path : the package search list
 pattern <name> : the pattern definition and usages
 patterns : the pattern definitions
 pwd : filtered current directory
 set_value <name> : a raw set definition
 set <name> : a formatted set definition
 sets : set definitions
 strategies : all strategies (build & version)
 tags : all active tags
 uses : used packages
 use_paths <target> : all paths towards the target package
 version : version of the current package
 versions <name> : visible versions of the selected package

system : display the system tag
unlock : unlock the current package
unlock <package> <version> [<path>] : unlock a package
version : version of CMT

cvstags <module> : display the CVS tags for a module
cvsbranches <module> : display the subdirectories for a module
cvssubpackagess <module> : display the subpackages for a module

global option :
 -quiet : don’t print errors
 -use=<p>:<v>:<path> : set package version path
 -pack=<package> : set package
 -version=<version> : set version
 -path=<path> : set root path
 -f=<requirement-file> : set input file
 -e=<statement> : add a one line statement
 -home=<directory> : find a home requirements file there
 -tag=<tag-list> : select specific tag(s)
 -private : force navigation through private uses
 -public : inhibit navigation through private uses (the default)

The following sections present the detail of each available command.

11. 3. 1 - cmt broadcast

This command tries to repeatedly execute a shell command in the context of each of the
used package of the current package. The used packages are listed using thecmt show
uses command, which also indicates in which order the broadcast is performed. When
theall_packages option, the set of packages reached by the broadcast is rather the same
as the one shown by thecmt show packages command, ie allCMT packages and
versions available throught the currentCMTPATH list.

Typical uses of this broadcast operation could be:

csh> cmt broadcast cmt config
csh> cmt broadcast - gmake
csh> cmt broadcast ’(cd ../; cvs -n update)’

44

The loop over used packages will stop at the first error occurence in the application of
the command, except if the command was preceded by a ’-’ (minus) sign (similarly to
the make convention).

It is possible to specify a list of selection or exclusion criteria set onto the package path,
using the following options, right after the broadcast keyword. These selectioncriteria
may be combined (eg one may combine the begin and select modifiers)

sh> cmt broadcast -begin=Cm gmake (1)
sh> cmt broadcast -select=Cm gmake (2)
sh> cmt broadcast -select=’/Cm/ /CSet/’ gmake (3)
sh> cmt broadcast -select=Cm -exclude=Cmo gmake (4)
sh> cmt broadcast -local gmake (5)
sh> cmt broadcast -depth=<n> gmake (6)
sh> cmt broadcast -global gmake (7)
sh> cmt broadcast -all_packages gmake (8)

According to the option, the loop will only operate onto:

1. the first package which path contains the string "Cm" , and then all other
reachable packages (in case other specifiers are used)

2. the packages which path contains the string "Cm"
3. the packages which path contains either the string "/Cm/" or the string "/CSet/"
4. the packages which path contains the string "Cm" , but which does not contain

the string "Cmo"
5. the packages at the same level as the current package
6. the packages at the same level as the current package or among the<n>first entries

in the CMTPATH list
7. the packages at any level of the CMTPATH search list
8. all the packages and versions currently available through the CMTPATH list

11. 3. 1. 1 - Specifying the shell command

A priori any Unix or DOS shell command can be specified in a boadcast
command. However, it’s important to understand the order of the various parsing
actions:

1. The current shell first parses the complete command line
2. CMT catches all possible options given to the broadcast command itself
3. CMT then gets the rest of the command line and makes it the shell command

to be executed during the broadcast scan.
4. This command line may be subject to template substitution (see below) by

CMT
5. Eventually the command line is passed to the local shell (which may then

perform additional parsing actions)

Considering this complex sequence of parsing, it may be appropriate to selectively
enclose the shell command passed to the broadcast action into quotes. It may even
be sometimes useful to have two levels of quotes

45

11. 3. 1. 2 - Templates in the shell command

Similarly to what exists in the pattern mechanism, some standard templated values
can be embedded inside the command to be executed by the broadcast action.
They take a standard form of <template-name> . These templates acquire their
value on each package effectively reached during the broadcast scan, and the
effective value is substituted before launching the command. The possible
templates are:

<cmtpath>
The element in the CMTPATH search list where the package has
been found

<package_offset> The directory offset to cmtpath

<package> The package name

<version> The version of the package

The next example shows a typical broadcast command listing the header files as
expected in the conventional location ../<package> :

> cmt broadcast ’ls ../<package>’
[...]
#--
Now trying [ls ../GenzModuleEvent] in /afs/cern.ch/atlas/software/dist/6.3.0/Generators/GenzModuleEvent/GenzModuleEvent-00-00-09/cmt (149/609)
#--
CVS KineHepMcmap.h
#--
Now trying [ls ../Tauola_i] in /afs/cern.ch/atlas/software/dist/6.3.0/Generators/Tauola_i/Tauola_i-00-00-13/cmt (150/609)
#--
CVS Jaki.icc Tauola_i.h Taurad.h config.h rn_tau.h tauola_i.inc
Jaki.h ReadPDGtable.h Tauola_i.icc Taurad.icc polhep.inc tauola_cblk.inc
#--
Now trying [ls ../NavigationEvent] in /afs/cern.ch/atlas/software/dist/6.3.0/Reconstruction/NavigationEvent/NavigationEvent-00-00-04/cmt (151/609)
#--
CVS INavigable.h INavigationCondition.h INavigationSelector.h INavigationToken.h NavigationToken.h
[...]

One should note that when templates are used in a broadcast command, it’s
important to enclose the command in quotes so as to inhibit any possible
parsing of the <> syntax by the shell.

11. 3. 2 - cmt build <option>

The actions associated with the build options are generally meant for internal use only,
and users will rarely (if ever!) apply them manually

All build commands are generally meant to change the current package (some file or
set of files is generated). Therefore a check against conflicting locks (ie. a lock owned
by another user) is performed by all these commands prior to execute it.

[-nmake] constituent_makefile< constituent-name >

This command is internally used by CMT in the standard Makefile.header
fragment. It generates a specific makefile fragment (named< constituent-name
>.make) which is used to re-build this fragment.

46

All such constituent fragments are automatically included from the main Makefile.

Although this command is meant to be used internally (and transparently) by
CMT when the make command is run, a developer may find useful in very rare
cases to manually re-generate the constituent fragment, using this command.

The -nmake option (which must precede the command) provides exactly the same
features but in a Windows/nmake context. In this case, all generated makefiles are
suffixed by .nmake instead of .make for Unix environments. The main makefile
is expected to be named NMake and the standard header is named
NMakefile.header

[-nmake] constituents_makefile

This command is internally (and transparently) used by CMT in the standard
Makefile.header fragment, and when the make command is run, to generate a
specialized make fragment containing all "cmt build constituent_makefile"
commands for a given package.

The -nmake option (which must precede the command) provides exactly the same
feature but in a Windows/nmake context. In this case, all generated makefiles are
suffixed by .nmake instead of .make for Unix environments. The main makefile
is expected to be named NMake and the standard header is named
NMakefile.header

dependencies

This command is internally (and transparently) used by CMT from the constituent
specific fragment, and when the make command is run, to generate a fragment
containing the dependencies required by a source file.

This fragment contains a set of macro definitions (one per constituent source file),
each containing the set of found dependencies.

library_links

This command builds a local symbolic link towards all exported libraries from the
used packages. A package exports its libraries through the < package >_libraries
macro which should contain the list of constituent names corresponding to
libraries that must be exported.

library Foo ...
library Foo-utils ...
...
macro Foo_libraries "Foo Foo-utils"

The corresponding cmt remove library_links command will remove all these
links.
make_setup

This command is internally (and transparently) used by CMT from the standard
Makefile.header fragment, and when the make command is run, to generate
another fragment containing all platform (or tag) specific macro definitions.

47

One copy of this fragment (named<tag>.make) is created per flavour of tag used at
build time. The tag considered in this operation is either the default tag value
(obtained from the CMTCONFIG environment variable) or specified to the make
command using the -tag=<tag>option)

This tag specific fragment represents the actual context that was considered at the
most recent make activation. It is automatically rebuilt when one of the
used requirements is modified.

msdev

This command generates workspace (.dsw) and project (.dsp) files required for the
MSDev tool.

vsnet

This command generates workspace and project files required for the Visual.net
tool.

os9_makefile

This command generates external dedicated makefile fragments for each
individual component of the package (ie. libraries or executable applications) to be
used in OS9 context. It generates specific syntaxes for the OS9 operating systems.

The output of this tool is a set of files (named with the components’ name and
suffixed by .os9make) that are meant to be included within the main Makefile
that the developer has to write anyhow.

The syntax of the cmt build os9_makefile utility is as follows :

sh> cmt build os9_makefile <package>

prototype<source-file-name>

This command is internally (and transparently) used by CMT from the constituent
specific fragment, and when the make command is run, to generate prototype
header files from C source files.

The prototype header files (named<file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C source file.

The effective activation of this feature is controled by the build strategy of CMT .
The build strategy may be freely and globally overridden from
any requirements file, using the build_strategy cmt statement, providing either
the "prototypes" or the "no_prototypes" values.

In addition, any constituent may locally override this strategy using the
"-prototypes" or "-no_prototypes" modifiers.

readme

48

This command generates a README.html file into the cmt branch of the
referenced package. This html file will include

a table containing URLs to equivalent pages for all used packages,
a copy of the local README file (if it exists).

tag_makefile

This command produces onto the standard output, the exhaustive list of all macros
controled by CMT , ie. those defined in the requirements files as well as the
standard macros internally built by CMT , taking into account all used packages.

11. 3. 3 - cmt check configuration

This command reads the hierarchy of requirements files referenced by a package, check
them, and signals syntax errors, version conflicts or other configuration problems.

An empty output means that everything is fine.

11. 3. 4 - cmt check files <reference-file> <new-file>

This command compares the reference file to the new file, and substitues the reference
file by the new one if they are different.

If substitution is performed, a copy (with additional extension sav) is produced.

11. 3. 5 - cmt checkout ...

See theparagraph on how to use cvs together withCMT , and more specifically the
details oncheckout oprations .

11. 3. 6 - cmt co ...

This is simply a short cut to thecmt checkout command.

11. 3. 7 - cmt cleanup [-csh|-sh]

This command generates (to the standard output) a set of shell commands (either for
csh or sh shell families) meant to unset all environment variables specified in
the requirements files of the used packages.

This command is internally used in the cleanup.[c]sh shell script, itself generated by the
cmt config command.

49

11. 3. 8 - cmt config

This command (re-)generates the setup scripts and the manimal Makefile (when it does
not exist yet or have been lost).

csh> cd ~/Packages/Foo/v1/cmt
csh> cmt config

To be properly operated, one must already be in the cmt or mgr branch of a package
(where the requirements file can be found).

This command also performs some cleanup operations (eg. removing all makefile
fragments previously generated). Generally speaking, one may say that this command
restores the CMT-related files to their original state (ie before any document
generation)

The situations in which it is useful to run this command are:

When the setup or cleanup scripts have been lost
When the minimal Makefile have been lost
When the version of CMT is changed
After restoring a package from CVS
After having manually changed the directory structure of a package (using a
manual copy operation, or renaming one of its parent directory, such as the
version directory)

11. 3. 9 - cmt create <package> <version> [<area>]

This command creates a new package or a new version of a package

csh> cmt create Foo v1

or:

csh> cmt create Foo v1 ~/dev

In the first mode (ie. without the area argument) the package will be created in the
default path.

The second mode explicitly provides an alternate path.

A minimal configuration is installed for this new package:

An src and an cmt branch
A very minimal requirements file
The setup and cleanup shell scripts
The minimal Makefile

50

11. 3.10 - cmt filter <in-file> <out-file>

This command reads<in-file>, substitutes all occurences of macro references (taking
either the form $(macro-name) or ${ macro-name }) by values deduced from
corresponding macro specifications found in the requirements files, and writes the
result into <out-file>.

This mechanism is widely internally used by CMT , especially for instanciating make
fragments. Then, users may use it for any kind of document, including maual
generation of MSDev configuration files, etc...

11. 3.11 - cmt help | --help

This command shows the list of options of thecmt driver.

11. 3.12 - cmt lock [<package> <version> [<area>]]

This command tries to set a lock onto the current package (or onto the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then install a small text file named lock.cmt into the cmt/mgr branch of the
package, containing the following text:

locked by <user-name> date <now>

3. Run a shell command described in the macro named lock_command meant to
install physical locks onto all files for this version of this package. A typical
definition for this macro could be:

macro lock_command "chmod -R a-w ../*" \
 WIN32 "attrib /S /D +R ../*"

11. 3.13 - cmt remove <package> <version> [<area>]

This command removes one version of the specified package. If the package does not
contain a conflicting lock, and if the user is granted enough access rights to remove
files,all files below the version directory will be definitively removed. Therefore this
command should be used with as much care as possible.

The arguments needed to reach the package version to be removed are the same as the
ones whic had been used to create it.

If the removed version is the last version of this package, (and only if its directory is
really empty) the package directory itself will be deleted.

51

11. 3.14 - cmt remove library_links

This command removes symbolic links towards all imported libraries which had been
installed using the cmt build library_links command. This command is generally
transparently executed when one runs gmake clean

11. 3.15 - cmt run ’shell-command’

This command runs any shell command, in the context of the current package.

In particular all environment variables defined in requirements file are first set before
running the command. This may be seen as a generic application launcher.

This may be combined with the global options -pack= package , -version= version ,
-path= access-path , to give a direct access to any package context.

11. 3.16 - cmt set version <version>

This command creates and/or fills in the version.cmt file for a package structured
without the version directory.

This command has no effect when run in the context of a package structured with the
version directory

This command must be run while being in the context of one CMT package.

11. 3.17 - cmt set versions

This command applies recursively the cmt set version ... command onto all used
packages using a broadcast operation.

Packages reached during the broadcast scan acquire their version from the original use
statement. This is this specified version which will be stored inside the version.cmt
files

11. 3.18 - cmt setup [-csh|-sh|-bat]

This command generates (to the standard output) a set of shell commands (either for
csh, sh or bat shell families) meant to set all environment variables specified in
therequirements files of the used packages.

This command is internally used in the setup.[c]sh or setup.bat shell script, itself
generated by the cmt config command.

52

11. 3.19 - cmt show <option>

all_tags

This command displays all currently defined tags, even when not currenty active

applied_patterns

This command displays all patterns actually applied in the current package

author
branches
clients<package>[<version>]

This command displays all packages that express an explicit use statement onto
the specified package. If no version is specified on the argument list, then all uses
of that package are displayed.

constituent_names
constituents
cycles

This command displays all cycles in the use graph of the current package.
Although CMT smoothly accepts such cycles, still it is generally a bad practice to
have cycles in a use graph, because in front of a cycle CMT can never decide on
the prefered entry point in the cycle, leading to somewhat unpredictable results, eg
in constructing the use_linkopts macro.

uses
use_paths<target-package>

This command displays all possible paths between the current package and the
specified used target package.

In particular this will detect if a package has no access to another one, due to
private use statements

fragment<name>

This command displays the actual location where the specified make fragment is
currently found by CMT , taking into account possible overridden definitions.

fragments
groups

This command displays all groups possibly defined in constituents of the current
package (using the -group=< group-name > option).

languages
macro<name>

53

This command displays a quite detailed explanation on the value assigned to the
macro specified as the additional argument. It presents in particular each
intermediate assignments made to this macro by the hierarchy of used statements,
as well as the final result of these assignment operations.

By adding a -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuration is defined.

macro_value<name>

This command displays the raw value assigned to the macro specified as the
additional argument. It only presents the final result of the assignment operations
performed by used packages.

By adding a -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuration is defined.

The typical usage of the show macro_value command is to get at the shell level
(rather than within a Makefile) the value of a macro definition, providing means
of accessing them (quite similarly to an environment variable) :

csh> set compiler=‘cmt show macro_value cppcomp‘
csh> ${compiler}

macros

This command extracts from the requirements file(s) the complete set of macro
definitions, selects the appropriate tag definition (or uses the one provided in the
-tag=<tag> option) and displays the effective macro values corresponding to this
tag.

This command is typically used to show the effective list of macros used when
running make and can be also used to build, as an argument list, the make
command as follows :

csh> eval make ‘cmt show macros‘

This use of cmt show macros is directly installed within the default target
provided in the standard Makefile.header file. Therefore if this file is included
into the package’s Makefile , macro definitions provided in the requirements files
(the one of the currently built package as well as the ones of the used packages)
will be expanded and provided as arguments to make.

By adding a -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without atcually going to a
machine or an operating system where this configuration is defined.

manager
packages

54

This command displays all packages (and all versions of them) currently reachable
through the current access path definition (which can be displayed using the cmt
show path command).

path

This command displays the complete and effective access path currently defined
using any possible alternate way.

pattern<name>

This command displays how and where the specified pattern is defined, and which
packages do apply it.

patterns

This command displays all pattern definitions.

pwd

This command displays a filtered version of the standard pwd unix command. The
applied filter takes into account the set of aliases installed in the standard
configuration file located in ${CMTROOT}/mgr/cmt_mount_filter .

This configuration file contains a set of path aliases (one per line) each proposing
a translation for non-portable file paths (imposed by mount constraints on some
contexts).

set_value<name>
set<name>
sets
strategies
tags

This command displays all currently active tags, and what part of the
configuration actually activates them

uses

This command displays a quite comprehensive and detailed explanation of the
hierarchy of use statements, with the effective selection made between possibly
compatible versions.

use Cm v7r11
use CSet v2r5
use OPACS v3
use Ci v5r2
use CSet v2r5
#
Selection :
use CMT v1r14 /lal
use CSet v2r5 (/lal)
use Ci v5r2 (/lal)
use OPACS v3 (/lal)
use Cm v7r11 (/lal)

55

The -quiet option may be used to remove from the output, the comments
(beginning with the # character), so as to display a simple list of used packages,
starting from the deepest uses.

version

This command displays the version tag of the current package.

versions<name>

This command displays the reachable versions of the specified package, looking at
the current access paths.

11. 3.20 - cmt system

This command displays the current value assigned by default to theCMTCONFIG
environment variable.

11. 3.21 - cmt unlock [<package> <version> [<area>]]

This command tries to remove a lock from the current package (or from the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then remove the text file named lock.cmt from the cmt/mgr branch of the
package.

3. Run a shell command described in the macro named unlock_command meant to
remove physical locks from all files for this version of this package. A typical
definition for this macro could be:

macro unlock_command "chmod -R g+w ../*" \
 WIN32 "attrib /S /D -R ../*"

11. 3.22 - cmt version | --version

This command shows the current verion ofCMT , including (if applicable) the actual
patch level. This always corresponds to the corresponding CVS tag assigned toCMT
sources.

11. 3.23 - cmt cvstags <module>

(see the section onhow tu use CVS together with CMT for more details on this
command)

56

11. 3.24 - cmt cvsbranches <module>

11. 3.25 - cmt cvssubpackages <module>

11. 4 - The setup and cleanup scripts

They are produced by thecmt config command and their contents is built according to the
specifications stored in the requirements file.

One flavour of these scripts is generated per shell family (csh , sh and bat), yielding the
following scripts :

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

The main sections installed within a setup script are :

1. Connection to the current version of the CMT package.
2. Setting the set of user defined public variables specified in the requirements file

(including those defined by all used packages). This is achieved by running the cmt
setup utility into a temporary file and running this temporary file.

3. Activation of the user defined setup and cleanup scripts (those specified using the
setup_script and cleanup_script statements).

It should be noted that these setup scripts donot contain machine specific information (due
to the online use of thecmt setup command). Therefore, it is perfectly possible to use the
same setup script on various platforms (as soon as they share the directories) and this also
shows that the configuration operation (thecmt config command) is required only once for a
set of multiple platforms sharing a development area.

11. 5 - cmt build prototype

This command is only provided for development ofC modules. It generates aC header file
containing the set of prototype statements for all public functions of a given module. Its
output is a file with the same name as the input source (given as the argument) and suffixed
with.ph .

The generated prototype header file is meant to be included whereever it is needed (in the
module file itself for instance).

A typical example of the use of cmt build prototype could be :

csh> cd ../src
csh> cmt build prototype FooA.c
Building FooA.ph

57

Running cmt build prototype will only produce a new prototype header file if the output is
actually different from the existing one (if it exists) in order to avoid confusing make checks.

The effective use of this facility (which may not be appropriate in all projects) is controlled
by one option of the build strategy, which can take one of the two values:

build_strategy prototypes
build_strategy no_prototypes

In addition to this global strategy specification, each application or library may individually
override it using the -prototypes or -no_prototypes options.

Lastly, the actual behaviour of the prototype generator is defined in the standard make
macro build_prototype (which default to call the cmt build prototype command, allowing
a user defined behavious to this feature)

12 - Using cvs together with CMT
Nothing special is apriori required by CMT with respect to the use of CVS . Nevertheless, one
may advertize some well tested conventions and practices which turned out to ensure a good
level of consistency between the two utilities.

Although none of these are required, the cmt general command provides a few utilities so as to
simplify the use of these practices. It should be noted that the added features provided by cmt rely
on the possibility to query CVS about the existing CMT packages and the possible tags setup for
these packages. CVS does not by default permit such query operations (since they require to scan
the physical CVS repository). Therefore CMT provides a hook to CVS (based upon standard
CVS features - not patches) for this. This hook can be installed by the following procedure (see
sections below for more details):

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

12. 1 - Importing a package into a cvs repository

Generally, everything composing a package (below the version directory and besides the
binary directories) is relevant to be imported. Then choosing a cvs module name is
generally done on the basis of the package name. Taking the previous examples, one could
import the Foo package as follows :

csh> cd/Foo/v1
csh> cvs import -m "First import" -I alpha -I hp9000s700 Foo LAL v1

In this example,

we have ignored the currently existing binary directories (here alpha and hp9000s700)
the cvs module name is identical to the package name (Foo)
the original symbolic insertion tag is identical to the version identifier (v1)

58

The choice of the module name can generally be identical to the package name. However,
some site specific management issues may lead to different choices (typically, a top
directory where groups of packages are gathered may be inserted).

Conversely, using symbolic tags identical to version identifiers appears to be a very good
practice. The only constraint induced by cvs is that the symbolic tags may not contain dot
characters (’.’), whereas no restriction exist from CMT itself. Thus version identifiers like
v3r2 will be preferred to the v3.2 form.

12. 2 - Checking a package out from a cvs repository

Assuming the previous conventions on module name and version identifier have been
selected when importing a package, the following operations will naturally intervene when
one need to check a package out (typically to work on it or to install it on some platform) :

csh> cd <some root> (1)
csh> mkdir Foo (2)
csh> cd Foo
csh> cvs checkout -d v1 Foo (3)
csh> cd v1/cmt
csh> cmt config (4)
csh> source setup.csh (5)
csh> [g]make (6)

1. one always have to select a root directory where to settle down this copy of the
extracted package. This may either be the so-called default root or any other
appropriate directory. In both cases, the next cmt config operation will automatically
take care ofthis effective location.

2. creating a base directory with the package name is mandatory here, and is not taken
into account by cvs during the chaeckout operation since one wants to insert the version
branch in between.

3. the package is checked out into a directory named with the expected version identifier
exactly corresponding to the version currently stored in the cvs repository.

4. then using the cmt config command (from the cmt branch) will update the setup scripts
against the requirements file and the effective current package location.

5. using this updated version of the setup script provides the appropriate set of
environment variables

6. lastly, rebuilding the entire package is possible simply using the [g]make command.

The actions decribed just above (from number 2 to number 4 included) can also be
performed using the cmt checkout command.

> cd <some work area>
> cmt checkout [modifier ...] <package> ...

modifier :
-l Do not process used packages (default).
-R Process used packages recursively.
-r rev Check out version tag. (is sticky)
-d dir Check out into dir instead of module name.
-o offset Offset in the CVS repository
-n Simulation mode on
-v Verbose mode on
-help Print this help

59

Thus the previous example would become:

csh> cd <some root>
csh> cmt checkout Foo
csh> cd Foo/v1/cmt
csh> source setup.csh
csh> [g]make

12. 3 - Querying CVS about some important infos

It is possible, using the commands :
cmt cvstags<module>
cmt cvsbranches<module>
cmt cvssubpackages<module>

to query the CVS repository about the existing tags installed onto a given CVS module, the
subdirectories and the subpackages (in the CMT meaning, i.e. when a requirements file
exists).

> cmt cvstags Cm
v7r6 v7r5 v7r4 v7r3 v7r1 v7
> cmt cvstags Co
v3r7 v3r6 v3

One should notice here that the cvstags command can give informations about any type of
module, even if it is not managed in the CMT environment.

However, in order to let this mechanism operate, it is required to install some elements into
the physical CVS repository (which may require some access rights into it). This
installation procedure (to be done only once in the life of the repositiory) can be achieved
through the following command:

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

However, the details of the procedure is listed below (this section is preferably reserved for
system managers and can easily be skipped by standard users):

1. copy the cmt_buildcvsinfos2.sh shell script into the management directory
${CVSROOT}/CVSROOT as follows :

sh> cp ${CMTROOT}/mgr/cmt_buildcvsinfos2.sh ${CVSROOT}/CVSROOT

2. install one special statement in the loginfo administrative file as follows :

sh> cd ...
sh> cvs checkout CVSROOT
sh> cd CVSROOT
sh> vi loginfo
...
.cmtcvsinfos $CVSROOT/CVSROOT/cmt_buildcvsinfos2.sh
sh> cvs commit -m "set up commitinfo for CMT"

60

12. 4 - Working on a package, creating a new release

This section presents the way to instanciate a new release of a given package, which
happens when the foreseen modifications will yield additions or changes to the application
programming interface of the package.

Then the version tag is supposed to be moved forward, either increasing its minor identifier
(in case of simple additions) or its major identifier (in case of changes).

The following actions should be undertaken then :

1. understand what is the latest version tag (typically by using the cmt cvstags command).
Let’s call it old-tag .

2. select (according to the foreseen amount of changes) what will be the next version tag.
Let’s call it new-tag .

3. check the most recent version of the package in your development area :

sh> cd <development area>
sh> cvs checkout -d <new-tag> <package>

4. configure this new release, and rebuild it :

sh> cd <new-tag>/cmt
sh> cmt config
sh> source setup.csh
sh> [g]make

12. 5 - Getting a particular tagged version out of CVS

The previous example presented the standard case where one gets the most recent version of
a given package. The procedure is only slightly modified when one wants to extract a
previously tagged version. Let’s imagine that the Foo package has evolved by several
iterations, leading to several tagged releases in the cvs repository (say v2 and v3). If the v2
release is to be used (e.g. for understanding and fixing a problem discovered in the running
version) one will operate as follows :

csh> cd <some root>
csh> mkdir Foo
csh> cd Foo
csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt
csh> cmt config
csh> source setup.csh
csh> make

61

13 - Interfacing an external package with CMT
Very often, external packages (typically commercial products, or third party software) are to be
used by packages developped in the context of the CMT environment. Although this can
obviously done simply by specifying compiler or linker options internally to the client packages,
it can be quite powerful to interface these so-called external packages to CMT by defining a glue
package, where configuration specifications for this external package are detailed.

Using this approach, one may :

provide a nickname for this external package,
adapt the version tag convention consistently to the project, hiding the version tag
specificities of eg. commercial packages.
provide compiler options using the the standard make macros <package>_cflags ,
<package>_cppflags or <package>_fflags ,
specify a set of search paths for the include files, using the include_dirs statement,
provide linker options using the the standard make macros <package>_linkopts

Let’s consider the example of theOPACS package. This package is provided outside of theCMT
environment. Providing a directory tree following the CMT conventions (ie. a branch named
after the version identifier, then ancmt branch) then a requirements file, containing (among
other statements not shown for the sake of clarity) :

package OPACS

include_dirs ${Wo_root}/include ${Co_root}/include ${Xx_root}/include \
${Ho_root}/include ${Go_root}/include ${Xo_root}/include

public
macro OPACS_cflags "-DHAS_XO -DHAS_XM"
macro OPACS_cppflags " $(OPACS_cflags) "

macro OPACS_linkopts "$(Wo_linkopts) $(Xo_linkopts) $(Go_linkopts) \
$(Glo_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(Htmlo_linkopts) \
$(W3o_linkopts) $(Co_linkopts) $(X_linkopts)"

Then every package or application, client of this OPACS package would have just to provide a
use statement like :

use OPACS v3

This procedure gives the complete benefit of the use relationships between packages (a client
application transparently inherits all configuration specifications) while keeping unchanged the
original referenced package, allowing to apply this approach even to commercial products so that
they may be integrated in resource usage surveys similarly to local packages.

14 - The installation area mechanism
CMT proposes and implements a flexible architecture for installation areas, meant to group the
results of the build process or any other information belonging to packages into shared disk
spaces. The typical usage of such installation areas is classical and expect to make only visible to
the clients of a given (sub-)project the results of the build process while hiding the details of the
package sources.

62

the basics of the mechanisms supported by CMT are the following:

1.

All mechanisms are customizable, so as to easily follow the project specific conventions

2.

However CMT proposes a minimal default behaviour based on the concrete experience in
large projects, as well as frequently met practices

3.

A typical well supported convention is to map the set of installation areas onto the set of
CMTPATH entries, associating the concept of CMTPATH splitting with the sub-project
organization

4.

A typical consequence of this approach is that many configuration parameters need to be set
according to the list of CMTPATH items. Eg on a Unix system, if one expects to find shared
libraries in every installation area, each of them being created in a corresponding
CMTPATH entry, one also expects to have LD_LIBRARY_PATH entries accordingly. The
mechanism of cmtpath_pattern is exactly designed for that.

5.

The mechanism easily supports the extension for installing binary files (libraries,
applications, java classes), runtime files, documentation and header files.

14. 1 - The default implementation

It is provided in terms of

1.

A set of cmtpath_patterns defined in the CMT requirements file. This can be displayed
using the command

> cmt show cmtpath_patterns

2.

A consistent set of actions added to the following make_fragments

63

application applications

library shared libraries

library_no_share static libraries

java_header Java applications

jar Java libraries

3.

One shell script for installing or uninstalling files or directories

${CMTROOT}/mgr/cmt_install_action.sh
${CMTROOT}/mgr/cmt_uninstall_action.sh
${CMTROOT}/mgr/cmt_install_action.bat
${CMTROOT}/mgr/cmt_uninstall_action.bat

The default architecture of this installation scheme is by default set for each
CMTPATH entry to:

<path>/InstallationArea/$(tag)/bin/... [1]
 /$(tag)/lib/... [2]
 /include/<package>/... [3]
 /share/bin/... [4]
 /share/lib/... [5]
 /... [6]
 /doc/<package>/... [7]
 /... [8]

1. Platform dependent executables
2. Platform dependent libraries
3. Public header files
4. Platform independent applications (eg Java applications)
5. Platform independent libraries (eg Java libraries)
6. other platform independent files
7. package specific documentations
8. project-wide documentation

The cmtpath_patterns are designed in this implementation for constructing a proper and
consistent sequence of system specific environment variables (eg PATH,
LD_LIBRARY_PATH, CLASSPATH) as well as compiler or linker options so as to
transparently refer to the installation area only when it is appropriate to ovverride the local
patterns.

15 - Installing CMT for the first time
These sections are of interest only if CMT is not yet installed on your site, of if you need a
private installation.

64

The first question you need to answer is the location where to install CMT . This location is
typically a disk area where most of packages managed in your project will be located.

Then, you have to fetch the distribution kit from the Web at http://www.lal.in2p3.fr/SI/CMT .
You must get at least the primary distribution kit containing the basic configuration information
and the CMT sources. This operation results in a set of directories hanging below the CMT root
and the version directory. The src branch contains the sources of CMT , the fragments branch
contains the makefile fragments and the mgr branch contains the scripts needed to build or
operate CMT .

15. 1 - Installing CMT on your Unix site

The very first operation after dowloading CMT consists in running the INSTALL shell
script. This will build the setup scripts required by any CMT user.

Then you may either decide to build CMT by yourself or fetch a pre-built binary from the
same Web location. The prebuilt binary versions may not exist for the actual platform you
are working on. You will see on the distribution page the precise configurations used for
building those binaries.

In case you have to build CMT yourself, you need a C++ compiler capable of handling
templates (although the support for STL is not required). There is a Makefile provided in the
distribution kit which takes g++ by default as the compiler. If you need a specific C++
compiler you will override the cpp macro as follows:

sh> gmake cpp=CC

The cppflags macro can also be used to override the behaviour of the compilation.

Another important concern is the way CMT will identify the platform. CMT builds a
configuration tag per each type of platform, and uses this tag for naming the directory where
all binary files will be stored. As such this tag has to be defined prior to even build CMT
itself.

CMT builds the default configuration by running the cmt_system.sh script found in the mgr
branch of CMT . Run it manually to see what is the default value provided by this script.
You might consider changing its algorithm for your own convenience.

A distribution kit may be obtained at the following URL :

http://www.cmtsite.org

Once the tar file has been downloaded, the following operations must be achieved :

1. Select a root directory where to install CMT . Typically this will correspond to a
development area or a public distribution area.

2. Import the distribution kit mentioned above.
3. Uncompress and untar it.
4. Configure CMT .
5. CMT is ready to be used for developing packages.

65

http://www.lal.in2p3.fr/SI/CMT

A typical corresponding session could look like :

csh> cd /Packages
csh> <get the tar file from the Web>
csh> uncompress CMTv1r14.tar.Z
csh> tar xvf CMTv1r14.tar
csh> cd CMT/v1r14/mgr
csh> ./INSTALL
csh> source setup.csh
csh> gmake

15. 2 - Installing CMT on a Windows or Windows NT site

You first have to fetch the distribution kit from the Web at http://www.cmtsite.org . You
must get at least the primary distribution kit containing the basic configuration information
and the CMT sources. This operation results in a set of directories hanging below the CMT
root and the version directory. The binary kit provided for Windows environments will
generally fit your needs.

You should consider getting the pre-compiled (for a Windows environment) applications,
and especially the ..\VisualC\install.exe application, which interactively configures the
registry entries as described in the next paragraph.

The next operation consists in defining a few registries (typically using the standard RegEdit
facility or the install.exe special application):

HKEY_LOCAL_MACHINE/Software/CMT/root will contain the root directory where
CMT is installed (eg. "e:").
HKEY_LOCAL_MACHINE/Software/CMT/version will contain the current version
tag of CMT ("v1r14" for this version).
HKEY_LOCAL_MACHINE/Software/CMT/path/ may optionally contain a set of text
values corresponding to the different package global access paths.
HKEY_LOCAL_MACHINE/Software/CMT/site will contain the conventional site
name.
HKEY_CURRENT_USER/Software/CMT/path/ may contain a set of text of text
values corresponding to the different package private access paths.

CMT can also be configured to run on DOS-based environments using the nmake facility.
In this case, the installation procedure is very similar to the Unix one:

A typical corresponding session could look like :

dos> cd Packages
dos> <get the tar file from the Web>
dos> cd CMT\v1r14\mgr
dos> call INSTALL
dos> call setup.bat
dos> nmake /f nmake

66

http://www.cmtsite.org/

16 - Differences with previous versions

17 - Appendices

17. 1 - Copyright

Copyright (c) 1996 LAL Orsay, UPS-IN2P3-CNRS (France).

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by the
Computer Application Development Group at LAL Orsay

(Laboratoire de l’Accelerateur Linaire - UPS-IN2P3-CNRS).

Neither the name of the Institute nor of the Laboratory may be used to endorse or
promote products derived from this software without specific prior written permission.

This software is provided by the LAL and contributors ‘‘as is’’ and any express or
implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall
the LAL or contributors be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability, or
tort (including negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.

17. 2 - Standard make targets predefined in CMT

These targets can always be listed through the following command :

sh> gmake help

67

target usage

help Get the list of possible make target for this package.

all build all components of this package.

clean remove everything that can be rebuilt by make

configclean remove all intermediate makefile fragments

install install binaries of this package to thecurrent installation area

uninstall uninstall binaries of this package from the current installation area

check run all applications defined with the -check option

component-name
only build this particular component (as opposed to the all target that tries to
build all components of this package)

group-name
build all constituents belonging to this group (ie. those defined using the
same -group=<group-name>option)

These targets have to be specified as follows :

sh> gmake clean
sh> gmake Foo

17. 3 - Standard macros predefined in CMT

17. 3. 1 - Structural macros

These macros describe the structural conventions followed by CMT . They receive a
conventional default value from theCMT requirements file. However, they can be
overridden in any package for its own needs.

68

macro usage default value

CMTrelease gives the current release number of CMT 14

CMTVERSION
gives the current complete version tag of
CMT

v1r14p20030616

tag gives the binary tag ${CMTCONFIG}

src the src branch ../src/

inc the include branch ../src/

mgr the cmt or mgr branch ../cmt/ or ../mgr/

bin the branch for binaries ../$(<package>_tag)/

javabin the branch for java classes ../classes/

doc the doc branch ../doc/

cmt_hardware the description of the current hardware <none>

cmt_system_version the version of the current OS <none>

cmt_compiler_version
the version of the currently visible C++
compiler

<none>

17. 3. 2 - Language related macros

These macros are purely conventional. They are expected in the various make
fragments available fromCMT itself for providing the various building actions.

During the mechanism of new language declaration and definition available in the
CMT syntax, developers are expected to define similar conventions for corresponding
actions.

Their default values are originally defined inside the requirements file of the CMT
package itself but can be redefined by providing a new definition in the package’s
requirements file using the macro statement. The original definition can be completed
using the macro_append or macro_prepend statements.

cc The C compiler cc

ccomp The C compiling command $(cc) -c -I$(inc) $(includes) $(cflags)

clink The C linking command $(cc) $(clinkflags)

cflags The C compilation flags none

pp_cflags The preprocessor flags for C none

clinkflags The C link flags none

69

cpp The C++ compiler g++

cppcomp The C++ compiling command $(cpp) -c -I$(inc) $(includes) $(cppflags)

cpplink The C++ linking command $(cpp) $(cpplinkflags)

cppflags The C++ compilation flags none

pp_cppflags The preprocessor flags for C++ none

cpplinkflags The C++ link flags none

for The Fortran compiler f77

fcomp The Fortran compiling command $(for) -c -I$(inc) $(includes) $(fflags)

flink The Fortran linking command $(for) $(clinkflags)

fflags The Fortran compilation flags none

pp_fflags The preprocessor flags for fortran none

flinkflags The Fortran link flags none

ppcmd The include file command for Fortran -I

javacomp The java compiling command javac

jar The java archiver command jar

lex The Lex command lex $(lexflags)

lexflags The Lex flags none

yacc The Yacc command yacc $(yaccflags)

yaccflags The Yacc flags none

ar The archive command ar -clr

ranlib The ranlib command r anlib

17. 3. 3 - Package customizing macros

These macros do not receive default values. They are all prefixed by the package name.
They are meant to provide specific variant to the corresponding generic language
related macros.

They are automatically and by default concatenated by CMT to fill in the
corresponding global use macros (see appendix on generated macros). However, this
concatenation mechanism is discarded when the -no_auto_imports option is specified
in the corresponding use statement.

70

The<package>_native_version is not subject to automatic concatenation.

< package
>_cflags

specific C flags

< package
>_pp_cflags

specific C preprocessor flags

< package
>_cppflags

specific C++ flags

< package
>_pp_cppflags

specific C++ preprocessor flags

< package
>_fflags

specific Fortran flags

< package
>_pp_fflags

specific Fortran preprocessor flags

< package
>_libraries

gives the (space separated) list of library names exported by this
package. This list is typically used in the cmt build library_links
command.

< package
>_linkopts

provide the linker options required by any application willing to access
the different libraries offered by the package. This may include support
for several libraries per package.

A typical example of how to define such a macro could be :

macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -lCm -lm"

< package
>_stamps

may contain a list of stamp file names (or make targets). Whenever a
library is modified, one dedicated stamp file is re-created, simply to
mark the reconstruction date. The name of this stamp file is
conventionally < library >.stamp . Thus, a typical definition for this
macro could be :

macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp"

Then, these stamp file references are accumulated into the standard
macro named use_stamps which is always installed within the
dependency list for applications, so that whenever one of the libraries
used from the hierarchy of used packages changes, the application will
be automatically rebuilt.

< package
>_native_version

specifies the native version of the external package referenced by this
interface package.
When this macro is provided, its value is displayed by the cmt show
uses command

< package
>_export_paths

specifies the list of files or directories that should be exported during the
deployment process for this package. Generally this is only useful for
glue packages refering to external software

71

< package
>_home

specifies the base location for external software described in glue
packages. This macro is generally used to specify the previous one

17. 3. 4 - Constituent specific customizing macros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each constituent, specific variants to the corresponding generic
language related macros.

By convention, they are all prefixed by the constituent name. But macros used for
defining compiler options are in addition prefixed by the constituent category (either
lib_ , app_ or doc_

They are used in the various make fragments for fine customization of the build
command parameters.

72

< category >_<
constituent
>_cflags

specific C flags

< category >_<
constituent
>_pp_cflags

specific C preprocessor flags

< category >_<
constituent
>_cppflags

specific C++ flags

< category >_<
constituent
>_pp_cppflags

specific C++ preprocessor flags

< category >_<
constituent
>_fflags

specific Fortran flags

< category >_<
constituent
>_pp_fflags

specific Fortran preprocessor flags

< constituent
>linkopts

provides additional linker options to the application. It is
complementary to - and should not be confused with - the < package
>_linkopts macro, which provides exported linker options required by
clients packages to use the package libraries.

< constituent
>_shlibflags

provides additional linker options used when building a shared library.
Generally, a simple shared library does not need any external reference
to be resolved at build time (it is in this case supposed to get its
unresolved references from other shared libraries). However, (typically
when one builds a dynamic loading capable component) it might be
desired to statically link it with other libraries (making them somewhat
private).

< constituent
>_dependencies

provides user defined dependency specifications for each constituent.
The typical use of this macro is fill it with the name of the list of some
other constituents which have to be rebuilt first (since each constituent
is associated with a target with the same name). This is especially
needed when one want to use the parallel gmake (ie. the -j option of
gmake).

17. 3. 5 - Source specific customizing macros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each source file, specific variants to the corresponding generic
language related macros.

73

By convention, they are all prefixed by the source file name followed by the source file
suffix (either _c , _cxx , _f , etc.)

They are used in the various make fragments for fine customization of the build
command parameters.

< constituent >_< suffix >_cflags specific C flags

< constituent >_< suffix >_cppflags specific C++ flags

< constituent >_< suffix >_fflags specific Fortran flags

17. 3. 6 - Generated macros

These macros are automatically generated when make is run.

The first set of them provide constant values corresponding to CMT based information.
They are not meant to be overridden by the user, since they serve as a communication
mean between CMT and the user.

< PACKAGE
>ROOT

The access path of the package (including the version branch)

< package >_root
The access path of the package (including the version branch). This
macro is very similar to the < PACKAGE >ROOT macro except
that it tries to use a relative path instead of an absolute one.

< PACKAGE
>VERSION

The used version of the package

PACKAGE_ROOT
The access path of the current package (including the version
branch)

package The name of the current package

version The version tag of the current package

package_offset The directory offset of the current package

cmtpath The package area where the current package has been found

The second set is deduced from the context and from the requirements file of the
package. They can be overridden by the user so as to customize the CMT behaviour.

< package >_tag
The specific configuration tag for the package. By default it is set to
$(tag) but can be freely overridden

constituents The ordered set of constituents declared without any group option

<group-name>
_constituents

The ordered set of all constituents declared using a
group=<group-name>option

74

The third set of generated macros are the global use macros . They correspond to the
concatenation of the corresponding package specific customizing options that can be
deduced from the ordered set of use statements found in the requirements file (taking
into account the complete hierarchy of used packages with the exception of those
specified with the
-no_auto_imports option in their use statement) :

use_cflags C compiler flags

use_pp_cflags Preprocessor flags for the C language

use_cppflags C++ compiler flags

use_pp_cppflags Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use_pp_fflags Preprocessor flags for the Fortran language

use_libraries List of library names

use_linkopts Linker options

use_stamps Dependency stamps

use_requirements The set of used requirements

use_includes
The set of include search paths options for the preprocessor from the
used packages

use_fincludes
The set of include search paths options for the fortran preprocessor from
the used packages

includes The overall set of include search paths for the preprocessor

fincludes
The overall set of include search paths options for the fortran
preprocessor

17. 3. 7 - Utility macros

These macros are used to specify the behaviour of various actions in CMT.

75

X11_cflags compilation flags for X11

Xm_cflags compilation flags for Motif

X_linkopts Link options for XWindows (and Motif)

make_shlib The command used to generate the shared library from the static one

shlibsuffix The system dependent suffix for shared libraries

shlibbuilder The loader used to build the shared library

shlibflags The additional options given to the shared library builder

symlink The command used to install a symbolic link

The command used to remove a symbolic link

build_prototype
The command usedto generate the C prototype header file (default to
the internal cmt dedicated command)

build_dependencies
The command used to generate dependencies (default to the internal
cmt dedicated command)

lock_command The command used to physically lock a package

unlock_command The command used to physically unlock a package

make_hosts
The list of remote host names which exactly require the make
command

gmake_hosts
The list of remote host names which exactly require the gmake
command

17. 4 - Standard templates for makefile fragments

template name usage used in fragment

ADDINCLUDE
additional
include path

< language >java

CONSTITUENT
name of the
constituent

< language >java jar make_header jar_header java_header
library_header application_header protos_header
library_no_share library application dependencies
cleanup_header cleanup_library cleanup_application
check_application document_header<document>trailer
dsw_all_project_dependency dsw_project
dsp_library_header dsp_shared_library_header
dsp_windows_header dsp_application_header dsp_trailer
constituent check_application_header

DATE now make_header

76

FILENAME
file name
without
path

buildproto< language >< document >

FILEPATH file path buildproto< language >< document >

FILESUFFIX
file suffix
(without
dot)

< language >

FILESUFFIX
file suffix
(with dot)

< document >

FULLNAME
complete
file path
and name

< language >cleanup< document >dsp_contents

GROUP group name constituents_header

LINE source files < language >dependencies constituent

LINKMACRO link macro application

NAME

file name
without
path and
suffix

buildproto< language >java< document >

OBJS object files
jar_header java_header jar library_no_share library
application cleanup_javadocument_header trailer

OUTPUTNAME
output file
name

java

PACKAGE
current
package
name

< language >dsw_header dsw_all_project
dsw_all_project_trailer dsw_trailer dsp_all
make_setup_header make_setup readme_header readme
readme_use readme_trailer

PACKAGEPATH
current
package
location

readme_use

PROTOSTAMPS
prototype
stamp files

protos_header

PROTOTARGET
prototype
target name

library_header application_header

SUFFIX
document
suffix

< document >

TITLE
title for
make
header

make_header

77

USER user name make_header

VERSION
current
package
version tag

readme_header readme readme_use

17. 5 - Makefile generation sequences

This section describes the various makefile generation sequences provided byCMT .
Each sequence description shows the precise set ofmake fragments used during the
operation.

Generated makefile description used make fragments

setup.make
Configuration files
for make

1. make_setup_header
2. make_setup

constituents.make
the main entry point
point for all
constituent targets

1. constituents_header
2. constituent
3. check_application_header

< constituent
>.make

application or library
specific make
fragment

1. make_header
2. java_header | jar_header | library_header |

application_header
3. protos_header
4. buildproto
5. jar | library | library_no_share | application
6. dependencies
7. <language>|<language>_library | java
8. cleanup_header
9. cleanup

10. cleanup_application
11. cleanup_objects
12. cleanup_java
13. cleanup_library
14. check_application

< constituent
>.make

document specific
make fragment

1. make_header
2. document_header
3. dependencies
4. <document>
5. <document-trailer>
6. cleanup_header

78

<package>.dsw
Visual workspace
configuration files

1. dsw_header
2. dsw_all_project_header
3. dsw_all_project_dependency
4. dsw_all_project_trailer
5. dsw_project
6. dsw_trailer
7. dsp_all

<constituent>.dsp
Visual project
configuration files

1. dsp_library_header |
dsp_shared_library_header |
dsp_windows_header |
dsp_application_header

2. dsp_contents
3. dsp_trailer

README .

1. readme_header
2. readme
3. readme_use
4. readme_trailer

17. 6 - The complete requirements syntax

The syntax of specification statements that can be installed in arequirements file are :

cmt-statement : application

| apply_pattern

| apply_tag

| author

| branches

| build_strategy

| cleanup_script

| cmtpath_pattern

| document

| ignore_pattern

| include_dirs

| include_path

| language

| library

| make_fragment

79

| manager

| package

| pattern

| private

| public

| setup_script

| setup_strategy

| symbol

| tag

| tag_exclude

| use

| version

| version_strategy

|

alias : alias alias-name default-value [tag-expr value ...]

application : application application-name [constituent-option ...]

 [source ...]

constituent-option : -OS9

| -windows

| -no_share

| -no_static

| -prototypes

| -no_prototypes

| -check

| -group=group-name

| -suffix=output-suffix

| -import=package-name

| variable-name = variable-value

source : [-s=new-search-path] file-name

apply_pattern : apply_pattern pattern-name [template-name = value ...]

80

apply_tag : apply_tag tag-name [tag-name ...]

author : author author-name

branches : branches branch-name ...

build_strategy : build_strategy build-strategy-name

build-strategy-name : prototypes

| no_prototypes

| keep_makefiles

| rebuild_makefiles

| with_install_area

| without_install_area

cleanup_script : cleanup_script script-name

cmtpath_pattern : cmtpath_pattern cmt-statement

 [; cmt-statement ...]

document : document document-name [constituent-option ...]

 [source ...]

ignore_pattern : ignore_pattern pattern-name

include_dirs : include_dirs search-path

include_path : include_path search-path

language : language language-name [language-option ...]

language-option : -suffix=suffix

| -linker=linker-command

| -prototypes

| -preprocessor_command=preprocessor_command

| -fragment=fragment

| -output_suffix=output-suffix

| -extra_output_suffix=extra-output-suffix

library : library library-name [constituent-option ...]

 [source ...]

macro : macro macro-name [tag-expr value ...]

macro_append : macro_append macro-name [tag-expr value ...]

81

macro_prepend : macro_prepend macro-name [tag-expr value ...]

macro_remove : macro_remove macro-name [tag-expr value ...]

macro_remove_all : macro_remove_all macro-name [tag-expr value ...]

make_fragment : make_fragment fragment-name [fragment-option ...]

fragment-option : -suffix=suffix

| -dependencies

| -header=fragment

| -trailer=fragment

manager : manager manager-name

package : package package-name

path : path path-name [tag-expr value ...]

path_append : path_append path-name [tag-expr value ...]

path_prepend : path_prepend path-name [tag-expr value ...]

path_remove : path_remove path-name [tag-expr value ...]

pattern : pattern [-global] pattern-name cmt-statement

 [; cmt-statement ...]

private : private

public : public

set : set set-name [tag-expr value ...]

set_append : set_append set-name [tag-expr value ...]

set_prepend : set_prepend set-name [tag-expr value ...]

set_remove : set_remove set-name [tag-expr value ...]

setup_script : setup_script script-name

setup_strategy : setup_strategy setup-strategy-name

setup-strategy-name : config

| no_config

| root

| no_root

| cleanup

| no_cleanup

82

symbol : alias

| macro

| macro_append

| macro_prepend

| macro_remove

| macro_remove_all

| path

| path_append

| path_prepend

| path_remove

| set

| set_append

| set_prepend

| set_remove

tag : tag tag-name [tag-name ...]

tag_exclude : tag_exclude tag-name [tag-name ...]

tag-expr : tag-name [& tag-name ...]

use : use package-name [version-tag [access-path]]

 [use-option]

version : version version-tag

version-tag : key version-number

 [key release-number [key patch-number]]

use-option : -no_auto_imports

| -auto_imports

key : letter ...

version_strategy : version_strategy version-strategy-name

version-strategy-name : best_fit

| best_fit_no_check

| first_choice

| last_choice

83

| keep_all

17. 7 - The internal mechanism of cmt cvs operations

Generally, CVS does not handle queries upon the repository (such as knowing all installed
modules, all tags of the modules etc..). Various tools such as CVSWeb, LXR etc. provide
very powerful answers to this question, but all through a Web browser.

CMT provides a hook that can be installed within a CVS repository, based on a helper script
that will be activated upon a particular CVS command, and that is able to perform some
level of scan within this repository and return filtered information.

More precisely, this helper script (found in ${CMTROOT}/mgr/cmt_buildcvsinfos2.sh)
is meant to be declared within the loginfo management file (see the CVS manual for more
details) as one entry named .cmtcvsinfos , able to launch the helper script. This installation
can be operated at once using the following sequence:

 sh> cd ${CMTROOT}/mgr
 sh> gmake installcvs

This mechanism is thus fully compatible with standard remote access to the repository.

Once the helper script is installed, the mechanism operates as follows (this actually
describes the algorithms installed in the CvsImplementation::show_cvs_infos method
available in cmt_cvs.cxx and is transparently run when one uses the cmt cvs xxx
commands):

1. Find a location for working with temporary files. This is generally deduced from the
${TMPDIR} environment variable or in /tmp (or in the current directory if none of
these methods apply).

2. There, install a directory named cmtcvs/< unique-name >/.cmtcvsinfos
3. Then, from this directory, try to run a fake import command built as follows:

 cvs -Q import -m cmt .cmtcvsinfos/< package-name > CMT v1

Obviously this command is fake, since no file exist in the temporary directory we have
just created. However,

4. This action actually triggers the cmt_buildcvsinfos2.sh script, which simply receives
in its argument the module name onto which we need information. This information is
obtained by scanning the files into the repository, and an answer is built with the
following syntax:

 [error= error-text] (1)
 tags= tag ... (2)
 branches= branch ... (3)
 subpackages= sub-package ... (4)

1. In case of error (typically when the requested module is not found in the
repository) a text explaining the error condition is returned

2. The list of tags found on the requirements file
3. The list of branches defined in this packages (ie subdirectories not containing a

84

http://www.cvshome.org/docs/manual/index.html

requirements file)
4. The list of subpackages (ie subdirectories containing a requirements files)

Contents
 1 Presentation

 2 The conventions

 3 The architecture of the environment

 3. 1 Supported platforms

 4 Installing a new package

 5 Localizing a package

 6 Managing site dependent features - The CMTSITE environment variable

 7 Configuring a package

 8 Selecting a specific configuration

 8. 1 Describing a configuration

 8. 2 Defining the user tags

 8. 3 Activating tags

 9 Working on a package

 9. 1 Working on a library

 9. 2 Working on an application

 9. 3 Working on a test or external application

 9. 4 Construction of a global environment

10 Defining a document generator

10. 1 An example : the tex document-style

10. 2 How to create and install a new document style

10. 3 Examples

11 The tools provided by CMT

11. 1 The requirements file

11. 1. 1 The general requirements syntax

11. 2 The concepts handled in the requirements file

11. 2. 1 The package structuring style

85

11. 2. 2 Meta-information : author, manager

11. 2. 3 package, version

11. 2. 4 Constituents : application, library, document

11. 2. 5 Groups

11. 2. 6 Languages

11. 2. 7 Symbols

11. 2. 8 use

11. 2. 9 patterns

11. 2.10 cmtpath_patterns

11. 2.11 branches

11. 2.12 Strategy specifications

11. 2.13 setup_script, cleanup_script

11. 2.14 include_path

11. 2.15 include_dirs

11. 2.16 make_fragment

11. 2.17 public, private

11. 2.18 tag

11. 3 The general cmt user interface

11. 3. 1 cmt broadcast

11. 3. 1. 1 Specifying the shell command

11. 3. 1. 2 Templates in the shell command

11. 3. 2 cmt build <option>

11. 3. 3 cmt check configuration

11. 3. 4 cmt check files <reference-file> <new-file>

11. 3. 5 cmt checkout ...

11. 3. 6 cmt co ...

11. 3. 7 cmt cleanup [-csh|-sh]

11. 3. 8 cmt config

11. 3. 9 cmt create <package> <version> [<area>]

11. 3.10 cmt filter <in-file> <out-file>

86

11. 3.11 cmt help | --help

11. 3.12 cmt lock [<package> <version> [<area>]]

11. 3.13 cmt remove <package> <version> [<area>]

11. 3.14 cmt remove library_links

11. 3.15 cmt run ’shell-command’

11. 3.16 cmt set version <version>

11. 3.17 cmt set versions

11. 3.18 cmt setup [-csh|-sh|-bat]

11. 3.19 cmt show <option>

11. 3.20 cmt system

11. 3.21 cmt unlock [<package> <version> [<area>]]

11. 3.22 cmt version | --version

11. 3.23 cmt cvstags <module>

11. 3.24 cmt cvsbranches <module>

11. 3.25 cmt cvssubpackages <module>

11. 4 The setup and cleanup scripts

11. 5 cmt build prototype

12 Using cvs together with CMT

12. 1 Importing a package into a cvs repository

12. 2 Checking a package out from a cvs repository

12. 3 Querying CVS about some important infos

12. 4 Working on a package, creating a new release

12. 5 Getting a particular tagged version out of CVS

13 Interfacing an external package with CMT

14 The installation area mechanism

14. 1 The default implementation

15 Installing CMT for the first time

15. 1 Installing CMT on your Unix site

15. 2 Installing CMT on a Windows or Windows NT site

16 Differences with previous versions

87

17 Appendices

17. 1 Copyright

17. 2 Standard make targets predefined in CMT

17. 3 Standard macros predefined in CMT

17. 3. 1 Structural macros

17. 3. 2 Language related macros

17. 3. 3 Package customizing macros

17. 3. 4 Constituent specific customizing macros

17. 3. 5 Source specific customizing macros

17. 3. 6 Generated macros

17. 3. 7 Utility macros

17. 4 Standard templates for makefile fragments

17. 5 Makefile generation sequences

17. 6 The complete requirements syntax

17. 7 The internal mechanism of cmt cvs operations

Images
1 Structuring a package - A typical example.

2 Structuring a sofware base.

3 The architecture of document generation.

Christian Arnault

88

	CMT Configuration Management Tool
	Version v1r14 Christian Arnault arnault@lal.in2p3.fr
	General index
	€1 - Presentation
	€2 - The conventions
	€3 - The architecture of the environment
	€3.€1 - Supported platforms

	€4 - Installing a new package
	€5 - Localizing a package
	€6 - Managing site dependent features - The CMTSITE environment variable
	€7 - Configuring a package
	€8 - Selecting a specific configuration
	€8.€1 - Describing a configuration
	€8.€2 - Defining the user tags
	€8.€3 - Activating tags

	€9 - Working on a package
	€9.€1 - Working on a library
	€9.€2 - Working on an application
	€9.€3 - Working on a test or external application
	€9.€4 - Construction of a global environment

	10 - Defining a document generator
	10.€1 - An example : the tex document-style
	10.€2 - How to create and install a new document style
	10.€3 - Examples

	11 - The tools provided by CMT
	11.€1 - The requirements file
	11.€1.€1 - The general requirements syntax

	11.€2 - The concepts handled in the requirements file
	11.€2.€1 - The package structuring style
	11.€2.€2 - Meta-information : author, manager
	11.€2.€3 - package, version
	11.€2.€4 - Constituents : application, library, document
	11.€2.€5 - Groups
	11.€2.€6 - Languages
	11.€2.€7 - Symbols
	11.€2.€8 - use
	11.€2.€9 - patterns
	11.€2.10 - cmtpath_patterns
	11.€2.11 - branches
	11.€2.12 - Strategy specifications
	11.€2.13 - setup_script, cleanup_script
	11.€2.14 - include_path
	11.€2.15 - include_dirs
	11.€2.16 - make_fragment
	11.€2.17 - public, private
	11.€2.18 - tag

	11.€3 - The general cmt user interface
	11.€3.€1 - cmt broadcast
	11.€3.€1.€1 - Specifying the shell command
	11.€3.€1.€2 - Templates in the shell command

	11.€3.€2 - cmt build <option>
	11.€3.€3 - cmt check configuration
	11.€3.€4 - cmt check files <reference-file> <new-file>
	11.€3.€5 - cmt checkout ...
	11.€3.€6 - cmt co ...
	11.€3.€7 - cmt cleanup [-csh|-sh]
	11.€3.€8 - cmt config
	11.€3.€9 - cmt create <package> <version> [<area>]
	11.€3.10 - cmt filter <in-file> <out-file>
	11.€3.11 - cmt help | --help
	11.€3.12 - cmt lock [<package> <version> [<area>]]
	11.€3.13 - cmt remove <package> <version> [<area>]
	11.€3.14 - cmt remove library_links
	11.€3.15 - cmt run 'shell-command'
	11.€3.16 - cmt set version <version>
	11.€3.17 - cmt set versions
	11.€3.18 - cmt setup [-csh|-sh|-bat]
	11.€3.19 - cmt show <option>
	11.€3.20 - cmt system
	11.€3.21 - cmt unlock [<package> <version> [<area>]]
	11.€3.22 - cmt version | --version
	11.€3.23 - cmt cvstags <module>
	11.€3.24 - cmt cvsbranches <module>
	11.€3.25 - cmt cvssubpackages <module>

	11.€4 - The setup and cleanup scripts
	11.€5 - cmt build prototype

	12 - Using cvs together with CMT
	12.€1 - Importing a package into a cvs repository
	12.€2 - Checking a package out from a cvs repository
	12.€3 - Querying CVS about some important infos
	12.€4 - Working on a package, creating a new release
	12.€5 - Getting a particular tagged version out of CVS

	13 - Interfacing an external package with CMT
	14 - The installation area mechanism
	14.€1 - The default implementation

	15 - Installing CMT for the first time
	15.€1 - Installing CMT on your Unix site
	15.€2 - Installing CMT on a Windows or Windows NT site

	16 - Differences with previous versions
	17 - Appendices
	17.€1 - Copyright
	17.€2 - Standard make targets predefined in CMT
	17.€3 - Standard macros predefined in CMT
	17.€3.€1 - Structural macros
	17.€3.€2 - Language related macros
	17.€3.€3 - Package customizing macros
	17.€3.€4 - Constituent specific customizing macros
	17.€3.€5 - Source specific customizing macros
	17.€3.€6 - Generated macros
	17.€3.€7 - Utility macros

	17.€4 - Standard templates for makefile fragments
	17.€5 - Makefile generation sequences
	17.€6 - The complete requirements syntax
	17.€7 - The internal mechanism of cmt cvs operations

	Contents

