CMT
Configuration ManagementTool

Versionvlrl4d
Christian Arnault

arnault@lal.in2p3.fr

General index

1 -Presentation

This environment, based on some management conventions and comprising several shell-based
utilities, is an attempt to formalize software production and especially configuration management
arounda package-orientedprinciple.

The notionof packagesepresents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for prodagsigreor a
framework. In such an environment, several persons are assumed to participate in the
development and the components themselves are either independent or relatedtteeeach

The environment provides conventidffisr namingpackages, files, directories afud

addressinghem) and toolfor automatingas much as possible the implementation of these
conventions. It permithe descriptionof the configuration requirements and automatically

deduce from the description the effective set of configuration parameters needed to operate the
packages (typicall§or building them orusingthem).

CMT lays upon some organisational or managerial principles or mechanisms described below.
However, it permits in many respects the users or the marntagenstrol , specialize and
customize these mechanisms, through parameterization, strategy control and generic
specifications.
e Many such packages are produced and maintained.
® The packages may or not be related to each other (deéinlingct acyclicgraph of
packages - not just a single tree).
® The concept of package may be extended to implement structuring or organizing patterns
such as those involved in project management.
® Project management policies and behavioural patterns can be easily expressed and
automated by CMT.
® FEachexecutablapplication(from now on simplynamedapplications) either belongs to a
particular package and/or defines its own environment and then makes use of some other
packages.
® Each package can be uniguely identified within the system or the framewariabye
which is usually a shorhnemoni@and which may be also used for isolating its name-space

(eg.by prefixingcomponents of the package by its mnemonic).
® A package installed in this environment mayelportedto a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved
through the transport, the reconstruction procedure will be preserved. Configuration
specifications can be easily provided to cope with machine, site or system specific features.
® Packages are maintained consistently to their declared relationships to each otherathrough
versionidentification model based on :
O aversion is defined with a mnemonic comprising one to three numhigensjor id,
theminorid, andthe patchid
O versions with different major ids are said to be incompatible,
O versions with same major ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.
O versions differing only by their patch id are said to be fully compatible with each other.
® Version control andmanagement schemes (eg. by @#®)) are usually consistently
operated, applying the conventions on organization and version identification.
® An application that uses one or several packages managed in this environment should not
itself be constrained to be manadsdCMT . The tools should only require a few exported
features (such as a few environment variables) for referencing any given package.
e similarly, a package maintained in this environment must be able to use packages that
not managed in this environment (which are oftafledexternalpackages).

Following these definitions, the basic configuration management operations involved here (and
serviced bythe CMT ' tools) consist of :
e installing the packages in conventional locations so that they can be referenced by each
other, following projects or teams structuring paradigms,
e describing theonfigurationrequirement$or each package:
O dependencies to other packages,
O Generic behavioural patterns meant to describe generic configuration items or project
specific policies.
O symbols to be exported to client packages (environment variables, make macros, etc...)
O components (alsnamedconstituent9 of the packages (libraries, applications,
generated documents)
O parameterization of the build and test tools
O parameterization of the deployment tools
O StrategieshatCMT should follow at run time, overriding its default ones.
e deducing the effective configuration parameters fromrmirementso as to automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible alternate versions of available packages).

2 - Theconventions

This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and develaped

® Each package is installed in a standard directory structure defined at least as follows:

<some root>/<Package mnemonic>/<version mnemonic>/cmt

or / and(obsolescentonvention)

<some root>/<Package mnemonic>/<version mnemonic>/mgr

The<version mnemonic>directory level may also be omitted, in which case the version
information will be stored inside the cmt directory in a conventional file named
version.cmt leading to the following alternateganization:

<some root>/<Package mnemonic>/cmt/version.cmt

In both caseghecmt directory holds the main source of information neene@MT : the
requirementdile. All CMT -related operations are generally executed frondihéstory.

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized agatid CMT package Any other structuring convention will be
supported by CMT and its operations can always be customized to fhbow

This structure is a central concept since all relationships between packages relies on the
package identification which unambiguously and exclusively consists in the duet [
package-namepackage-versioh (or package-namenly when the version directory level

is omitted).

® Constructing the internal structure of a package.

Many other parallel branches (simitarcmt) suchassrc, include or test may be freely

added to this list according to the specific needs of each package. In particular, a set of such
parallel branches are expectedtmtainbinary outputs (those that compilers, linkers,

archive managers or other kinds of code or pseudo-code generators can produce). Their
name always corresponds to theticularconfigurationtag used to produce the output

(such as the machine or operating system tyf@CMT toolkit provides, througkhe cmt
systemuitility, a default value for this token. An environment varigd@MTCONFIG) is

also assigned to this value (Shecompletedescriptionof configurationtags).

Each branch may in addition be freely structured, and there is no constraint to the
complexity of thisorganization.

. v] » cil requirements
* virl —oxx v.F
v SIC stest| *eoxx*™.F
" vir2 * lib *cxx *.F
» doc * html
R74s N data * dat
L ™ Sand IS *exe ¥*a*so
™ Liniix *exe*a*s0
™ insure *exe*a’so

1 - Structuring a package - A typicakample.
e Organizing a software base.

A software base is generally composed of multiple coherent sets of packages, each installed
in its specific root directory and formirdifferent packageareas

There are no constraints on the number of such areashith CMT packages are
installed. We'llseelateron how the different areas will be declaredand identtiie@MT .

examples of such organization can:be

O A package area

E A package

D || D_| Versions of a package

\\ A prvate use relationslup

\ A public use relationshup

2 - Structuring a sofwaréase.

3 - The architecture of theenvironment

This environment is based on the fact that one of its package®dCMT) provides the basic
managemenbols.CMT , as a package, has very little specificities and as such itself obeys the
general conventions. The major asymdieyweenCMT and all other packages is the fact that
onceCMT is installed it implicitly defineenedefaultroot area for other packages (through the
environment variabl€EMTROOT).

Then packages may be installed either in this default root area or in completely different areas.
The only constraint in this case being that their root will have to be spesxjdiditly.

A typical configuration for this environment consists of selecting a public area (generally

available from several machines throwgtNFS or AFS -like mechanism), installinthe CMT

basic package, and then installing user packages in this default root or in private ones. One
frequent semantic given to this style of configuration is to consider the packages installed in the
area hanging below default root as the publicly available versions, whereas packages installed
elsewhere are rather meant to be managed in a private context, or in the context of a non public
project. However, dependencies between packages will always be possible (as long as the system
based protections provide appropriate acagbss).

CMT is operated through one main user interface ctiiiecommand, which handlése CMT
conventions and which provides a set of services for

® creating a new package, installing it below thedefault root or in a private area. This
operation will create or check the local package directory tree and generate several minimal
scripts (see the descriptiontbi createcommand),
® describing or monitoring :
O the relationships between the package and other packages
O the configuration features either specified in the current package, or imported from
related (used) ones. (symbols, patterns, fragments)
O the constituents of the package in terms of libraries, executables, or generated
documents.
e automatically generating the reconstruction scijptskefiles) from this description.
® recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared librarie§, prototypes, management of interactibesweenCVS and

CMT itself, the management of a similar architecforeNindows or OS9, setting up
protections for packages (though locks)...).

3.1 - Supportedplatforms

CMT has been ported and tested on a wide range of machines/operating systems, including :
e DEC-Unix V4.0
HP-UX-10 (several types of platforms)
AlX-4
Solaris
IRIX
Several variants of LynxOS
Linux 2.x
Windows 95/98/NT/Windows2000 in various environments:
O nmake based environment
O MSDev/VisualC 6 environment
O MSDev/VisualC 7 environment
® Darwin (Mac OSX)
This in particular means that a package developped on one platform may be re-configured
towards any of these platforms without any change to its configuration description. All
platform specific tools will be dynamically reconfigured and parametetiaedparently.

4 - Installing a newpackage

We consider here the installation of a user package. Inst@INig itself requires special
attention and is described irdadicatedgectionof thisdocument.

Therefore, we assuntkatsomeroot directory has been selected by the system managehaind
CMT is already installed somewhere. One firsttoesetup CMT in order to gain access to the
various management utilities, using for example the sbetimand:

csh> source /lal/CMT/v1rl4/mgr/setup.csh
or

ksh> . /lal/lCMT/v1rl4/mgr/setup.sh

or

dos> call \la\CMT\v1rl4\mgn\setup.bat

Obviously, thisoperatiormust be performed (once) before aotherCMT action. Therefore it is
often recommended to install this setup action straight itothe script.

Thesetupscript used in this example is a constantie CMT environment : every

configured package will have one such setup script automatically generated and iristalled
CMT . It is one important entry point to any package (and tb@MT itself). It provides
environment variable definitions and recursive invocations of setup scripts for rélaged

) packages (A corresponding cleanup script is also provided). This script contains a uniform
mechanisnfor interpretingthe requirementsile so as to dynamically define environment
variables, aliases for the package itself and all its used packages. It is constructed once per
package installation bthe cmtcreatecommand, or restored lilge cmtconfig command (if

it has beerost).

A package is primarily defined lgnameand aversionidentifier (this duet actually forms the
completepackagddentifier). These two attributes will be given as argumémtsnt create such
as in the following example

csh> cd mydev
csh> cmt create Foo vl

Configuring environment for package Foo version v1.

CMT version virl4. [1]
Root set to /home/arnault/mydev.

System is Linux-i686 [2]
Installing the package directory [3]

Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

1. This shows which actual CMT version you are currently using

2. This shows the current configuration tag (also availabldhbgmt system command).
In this example this is linux machine

3. This shows the detailed construction of the complete directory structure, starting from the
top directory which has the name of the package. Since we are creating a completely new
package, there will be by default only two branches below the version directony and
src

The package creation occured from the current directory, creating from there the complete
directory tree for this newackage.

In the next example, we install the package in a completely different area,by explicitly specifying
the path to it as a third argumeatcmt create:

> cmt create Foo vl /ProjectB

Configuring environment for package Foo version v1.
CMT version v1rl4.

Root set to /ProjectB.

System is Linux-i686

Installing the path directory
Installing the package directory
Installing the version directory
Installing the cmt directory
Installing the src directory
Creating setup scripts.
Creating cleanup scripts.

Several file creations occurred at this level :
® a minimal directory tree for the package, includingandcmt (the other branches will be
installed when needed or generated at build time).

® an empty configuration specification file (nanteduirements) installed inthecmt
branch.

® A minimal Makefile (on Unix environments only), containing

include $(CMTROOT)/src/Makefile.header

include $(CMTROOT)/src/constituents.make

This Makefile does not need any further modification to build any of the constituents
managedy CMT . The intermediate makefile fragments will always be re-generated
transparently and automatically at build time. However (and thanks to this feature), this file
will not be modifiedanymoreby CMT itself. Thus you may insert any particular make
statement you would feel appropriate, typically when you ask for operations that cannot be
taken into accourtiy CMT .

® A similar minimal NMake file (on Windows environments only), containing
linclude $(CMTROOT)\src\NMakefile.header

linclude $(CMTROOT)\src\constituents.nmake

e the setup and cleanup scripts (one flavour for each feimeilly).
Oneamaythen setup this new package by running the setup script (which will not have much
effect yet since the requirements file is empty) :

sh> cd ~/mydev/Foo/vl/cmt
sh> . setup.sh

or

csh> cd ~/mydev/Foo/vl/cmt
csh> source setup.csh

or

dos> cd \mydev\Foo\v1\cmt
dos> call setup.bat

The FOOROOT andFOOCONFIG environment variables are defined automatically by this
operation.

It should be noted that running the setup script of a package is not always necessary for building
operations. The only situation where running gtsptmaybecome useful, is when an

application is to be run, while requiring domain specific environment variables defined in one of
the used packages. Besides this particular situation, running the setup scripts may not be needed
atall.

Lastly, this newly created package may be removed by the quite similar remove command, using
exactly the same arguments as those used for creatipgtkage.

csh> cd mydev
csh> cmt remove Foo vl

Removing package Foo version v1.
CMT version virl4.

Root set to /home/arnault/mydev.
System is Linux-i686

Version v1 has been removed from /home/arnault/mydev/Foo
Package Foo has no more versions. Thus it has been removed.

or:

csh> cmt remove Foo vl /ProjectB

Removing package Foo version v1.
CMT version v1rl4.

Root set to /ProjectB.

System is Linux-i686

Version v1 has been removed from /ProjectB/Foo
Package Foo has no more versions. Thus it has been removed.

So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to workaompplicationor onalibrary for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of dsllows:

csh> cd ~/mydev/Foo/vl/cmt
csh> cat >../src/FooTest.c
#include <stdio.h>

int main ()

printf ("Hello Foo\n");
return (0);

}

csh> vi requirements

application FooTest FooTest.c

csh> gmake

csh> source setup.csh
csh> FooTest.exe
Hello Foo

Directly running the application is possible since the application has been installed after being
built in anautomaticinstallationareareachable through tretandard®ATH environment
variable

This can also be integrated in the build process by providing the -check option to the application
definition:

csh>cd ../cmt
csh> vi requirements

application FooTest -check FooTest.c
csh> gmake check
Hello Foo

5 - Localizing apackage

In the next sections, we'll see thackageseferencesach other by meais userelationships.
Generally packages are found in different locations, according to the project - or sub-project -
they belongo. CMT provides a quite flexible mechanidor localizingthe referencegackages.

A given version ofa given package is always referred to by @dgisgstatement withirits
requirements file. This statement should specify the package through kienee

® its name (suchsBar)
® ts version (suclasv7rs)
e optionally its expected absolute location or relative prefix (also ctilkglsepath)

use Bar v7r5 [1]
or
use Bar v7r5 A [2]
or

use Bar v7r5 /ProjectB/A [3]

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order)

1. the absolute access paththié usepathis absolute (case #3),

2. the access paths optionally registered in the configuration parameter - see below
CMTPATH (and in decreasing priority, the first element being searched for first),
the default root.

4. the path where the current packagmésalled,

w

10

The configuratiorparametetCMTPATH can be specified either in the environment
variablenamedCMTPATH or in .cmtrcfiles, which can themselves be located either in the
current directory, ithehomedirectory of the developper ar ${CMTROOT}/mgr. In the
Windows environment, this configuration parameter may also be instalkeRagistry
under either the keys:

e HKEY_LOCAL_MACHINE/Software/CMT/path

e HKEY_CURRENT_USER/Software/CMT/path
(A graphical tool vailablen %CMTROOT%\VisualC\install.exgermits the interactive
modification ofthislist)

If thepathargument is specified as a relative path (case #2 above) (ie. theteaslingslash
character or it's nod diskon windows machines), it will be used asoffisetto each search case.
The search is done starting from the list specifietiéCMTPATH configuration parameter,
then using the default root; and the offset is appended at each sdacchied.

TheCMTPATH parameter is thus used as a search list for the packages, and the individual paths
are separated in this lisy colons(semi-colon®nWindows).

As an example, if we specifie CMTPATH parameter as follows
csh> setenv CMTPATH /home/arnault/mydev:/ProjectB

sh> export CMTPATH=/home/arnault/mydev:/ProjectB

bat> set CMTPATH=/home/arnault/mydev;/ProjectB

or (in arequirements file)

path_append CMTPATH "/home/arnault/mydev"
path_append CMTPATH "/ProjectB"

or (ina.cmtrc file)

CMTPATH=/home/arnault/mydev:/ProjectB

Thenausestatement (defined within a given package) containing

use Bar v7r5
use BarA vl A

(and assuming that the default r@sstal) would look for thepackag8ar from :
1. /home/arnault/mydev/Bar/v7r5/cmt
2. /ProjectB/Bar/v7r5/cmt
3. /lal/Bar/v7r5/cmt
4. the same path as the currpatkage
Whereas thpackag8arA would be searched from :
1. /home/arnault/mydev/A/BarA/vl/cmt
2. /ProjectB/A/BarA/vl/cmt
3. /lal/A/BarAlv1/cmt
4. the sub-directoryA within thesame path as the currpatkage,
The packages are searched assuming that the directory hierarchy below the access paths always

11

follow the convention :
1. there is a first directory level exactly named according to the package name (this is case
sensitive),
then (optionally) the next directory level is named according to the version tag,
then there is a branctamedcmt ,
. lastly there isarequirementdile within thiscmt branch.
us the list of access paths is searched for until these conditions are properly met.

A wn

j

The actual complete search list can always be visualized by the command:

> cmt show path

Add path /home/arnault/dev from CMTPATH
Add path /ProjectB from CMTPATH

Add path /lal from default path

#

/home/arnault/dev:/ProjectB:/lal

6 - Managing site dependent features - The CMTSITE
environment variable

Software bases managegdCMT are often replicated to multiple geographically distant sites (as
opposed to machines connected through AFS-like WAN). In this kind of situation, some of the
configuration parameters (generally those used for instance to reference local installations
externalsoftware) take differentalues.

TheCMTSITE environment variabler registryin Windows environments, is entirely under the
control of thesite manager and can be set up with a value representing the site (typical values
maybelLAL , Virgo , Atlas, LHCb , CERN, etc.).

This variable, when set, correspondsitag which can be used to select different values for
make macros or environmevdriables.

A typical use for this tag is to build up actual values for the location path of an external software
package. Here we take the example of the Anaihgy:

macro AnapheTOP "'\
CERN "/afs/cern.ch/sw/lhcxx™" \
BNL "/afs/rhic/usatlas/offline/external/lncxx" \
LBNL "/auto/atlas/sw/lhcxx"

7- Configuring a package

The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file uniguemedrequirements and installed ithecmt
branch of the package lodate.

An empty version of this file is automatically created the first time the package is installed, and
the package manager is expected to augment it with configuspmifications.

12

Many configuration parameters are supposed to be describeatigrequirementdile - seethe
detailedsyntax specifications here - namely

the package information about its author(s) and manager(s)

the relationships with other packages

the package constituents (libraries, applications, documents, etc.)

the policy patterns to be applied by clients of this package

the parameterization of the tools used in the build process (eg. make macros)

the parameterization of the run-time activity (eg. environment variables, searctepajhs,

Generally, every such appropriate parameter will be deduced on demand from
therequirementdile(s) through the various query functions available fthecmt main driver.
Therefore there is no systematic package re-configuration per se, besides the very first time a
package is newly installed in its location (usihgcmt createaction).

Query actions (generally provided usiihg cmt show... family of commands) are embedded in
the various productivity tools, such as the setup shell scripts, or makefile fraggnenators.

These query actions always interpret the sateguirementdiles obtained from the current
packageandfrom the packages in tlegfectiveusedchain. Symbols, tags and other definitions

are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Conversely one may say that parameters definedragairementdile are meant to be exported
to the clients of thpackage.

Other configuration parameters are also optionally insertedthieHOME andUSER _context
requirementsiles

Most typical examples of these query functians:

cmt setup builds a shell command line for setting up environment variables
cmt showmacros construct the effective set of inherited make macros

cmt showusesgives the ordered and flattened set of used packages

cmt showconstituentslists the package’s constituents

cmt showpath lists the effective search path for packages.

cmt showstrategiesshows the current setup of variduactionalCMT strategies.

8 - Selecting a specificonfiguration

A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

e the operating system (suabBLinux, Windows, ...)

e the platform (suclasintel, Compag, Sun, etc...)

e the choice of the compiler (suelsg++ , egcs, CC, etc...)

® options used for compiling (suesoptimizer, debugger, etc...) or linking

® the context specifications (selecting a particular version of a firmware, selecting a database
server, ...)

® the siteitself

13

Carefully describing this configuration is essential both for maintenance operations (so as to
remember the precise conditions in which the package was built) and when the development area
is sharedbetween machines running different operating systems, or when a project has to be
deployed on several sites.

8.1 - Describing aconfiguration

CMT relies on several complementary conventions or mechanisms for this description and
the associated management. All these conventions rely on the concepfigdirationtags

® A tag is a symbol that describes one aspect of the configuration.

® A tag carbeactivewhen the corresponding aspect of the configuration isotrue
inactiveotherwise

® The set of active tags represents the complete configuration known by CMT, and can
be visualized with themt showtagscommand

1. Some aspects of the configuration - and the associated tags - are automatically deduced
from some standard environment variables that the user is expected to specify
(typically using shelcommands):

® CMTCONFIG describes the current settings for producing binary objects. One
default value is provided automatically by CMT, but generally project will
override it to apply specific conventions.

The default value is computed by CMT in the
${CMTROOT}mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type
and the operating system type (using a mixinthefiname standardJNIX
command with various operating system specific definitions such dd¢-the
based's sysnamecommand)

® CMTSITE characterizes the current site. Its syntax is complé&isty

e CMTEXTRATAGS may contain a space-separated list of additional tags to
systematically activate

Note thathe CMTBIN variable which represents the current binary installation
of CMT itself does NOT correspond to day.

2. Some aspects of the configuration represents the implicit knowledge CMT gets of the
current context:

® The value given byheunamestandard Unix facility is always a valid
configuration tag(eg.Linux)

® The current major version id of CMT is a valid tag and takefotine CMTv<n>
(eg.CMTv1)

14

® The current minor version id of CMT is a valid tag and take$aditme CMTr<n>
(eg.CMTr14)

® The current patch id of CMT is a valid tag and takesahm CMTp<n> (eg.
CMTp20030616)

3. User defined tags can be explicitly or implicitly activated:

e explicitly from thecmt command line, using théag=<tag-list> option
e explictly from requirements files usirige apply_tag<tag> syntax
® implicitly from requirements files using the tag association syntax, when a tag is
associated with an otherwise activated tag. One examible Usix tag associated
by CMT itself with most Unix variants
The minimal tag set available from CMT can be visualized as follows (note that the exact
output will not necessarly be the one presented in this document according to the context
effectively used):

> cd ${CMTROOT}

> cmt show tags

CMTv1 (from CMTVERSION) [1]
CMTr14 (from CMTVERSION) [1]
CMTp20030616 (from CMTVERSION) [1]
Linux (from uname) package CMT implies [Unix] [2]
i386_linux24 (from CMTCONFIG) [3]
CERN (from CMTSITE) [4]

Default (from Default)

Unix (from package CMT) [5]

1. Implicit tags deduced from the current version of CMT

2. Implicit tag obtained from the uname command (note that there is an associated tag
defined here)

3. The current value of CMTCONFIG

4. The current value of CMTSITE

5. Aindirectly activated tag (associated with another attigg

8.2 - Defining the usertags

The user configuration tags can generally be specified though various complementary
means:

® CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

sh> export CMTSITE=CERN

e CMTSITE and CMTCONFIG can alternatively be specified usiaget statement in a
requirements file

set CMTSITE "CERN"
set CMTCONFIG "${CMTBIN}" sun "Solaris-CC-dbg"

® Additional tags may also be associated with other tags, tietgg statement (in a
requirements file):

15

tag newtag tagl tag2 tag3

which means that:
O newtagdefines a tag
O whennewtagis active, then both tagl, tag2 and tag3 are simultaneously active

Tags may be declarebexclusiveusingthetag_excludesyntax.

tag_exclude debug optimized

This example implies that the twagsdebugandoptimized should never become
active simultaneously.

Tags are assigned priorities according to the way they have been defined. The priority
is particularly useful for specifying exclusion. The tag association promotes the priority
of the associated tags to the priority of the defining tag. The following decreasing
priorities are currently defined by CMT:

tag specified in the command line using the -tag=<tag-list>option
tag deduced from CMTCONFIG

tag defined in a requirements file usithgtag syntax

tag deduced from CMTSITE

tag deduceffom uname

tags deduced from the version of CMT

ok wnNE

8.3 - Activating tags

By default, onlyCMTCONFIGunameand CMTSITE (also named system tags) are active at
any time.

Then it is possibléo activatealternate tags through the following argumeatany cmt
command:

-tag=<tag-list>

will cleanup the complete current tag set, and activate the new tags (the system tags are
restored).

-tag_add=<tag-list>
will add to the current tag set the tags specified in the comma sepaated
-tag_remove=<tag-list>

will remove from the current tagset the tags specified in the comma seistated

Beware that giving these arguments generally make the selected tag set active only
during the selected command. Therefore two different CMT commands run with
different tag sets will generally yield different results. However it's often useful to
persistify a tag set. This can be obtained by the following mechanisms:

1. Forcing a tag in a requirements file usthgapply_tag syntax

16

Eg the following syntax installed in a requirements file will forcetéudoo :

tag_apply foo

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr14 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
Default (from Default)

foo (from package Foo)

2. Implying a tag from another one using the tag association syntax

tag Linux foo

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr14 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname) package Foo implies [foo]

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
Default (from Default)

foo (from package Foo)

3. Through conventionally encoded values of CMTCONFIG

tag Linux-foo Linux foo

> export CMTCONFIG=Linux-foo

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr14 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-foo (from CMTCONFIG) package Foo implies [Linux foo]
Default (from Default)

Linux-i686 (from package CMT) package CMT implies [Linux]
foo (from package Foo)

The current active tag set can always be visualized usingrthehowtagscommand.

> cmt show tags

CMTv1 (from CMTVERSION)

CMTr14 (from CMTVERSION)

CMTpO (from CMTVERSION)

Linux (from uname)

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
Default (from Default)

> cmt -tag_add=tagl,tag2,tag3 show tags
CMTv1 (from CMTVERSION)

CMTr14 (from CMTVERSION)

CMTpO (from CMTVERSION)

17

Linux (from uname)

Linux-i686 (from CMTCONFIG) package CMT implies [Linux]
tagl (from arguments)

tag2 (from arguments)

tag3 (from arguments)

Default (from Default)

Typical usages of those extra tage:

when using special compiler options (e.g. optimization, debugging, ...)

for switching to different compiler®.g.gccversus the native compiler)

when one uses a special debugging environment suokwas or Purify

when using special system specific features (such as whether one uses thread-safe
algorithms omot)

All symbol definitions providing specific values triggered by the active selectors will be
selected, such as:

macro_append cppflags ™\
debug "-g"

9 - Working on a package

In this section, we’ll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are contintiiagxampleof the Foo
package already used in tiscument.

9.1 - Working on alibrary

Let's assume, as a first example, thetFoo packages originally composed of onlébrary
libFoo.a itself made from two source$ooA.candFooB.c. A shared flavour of thibrary
libFoo.soor libFoo.slor libFoo.dll) is alsoforeseen.

The minimal set of branches providegCMT (once themt create operation has been
performed) for a packadecludessrc for the sourceandcmt for theMakefilesand other
scripts.

The variougoolsCMT provide will be fully exploited if one respects the roles these
branches have to play. However it is always possible to extend the default understanding
CMT gets on the package by appropriate modifiers (typicallgMeyridingstandard

macros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a softvpaekage.

We first have to create the two source files intostfeebranch (typically using our favourite
text editor). Then a description of the expected library (ie. built from these two source files)
will be entered into theequirements file. The minimal syntax required in our example will
be:

18

csh>cd ../emt
csh> vi requirements 1)
library Foo FooA.cxx FooB.cxx

1. the requirements file located inthecmt branch of the package receives the
description of thidibrary component. This is done using ditgary statement.

Thecmt createcommand had generated a simidiakefile(or NMake file) which is

generaly sufficient for all standard operatiosinceCMT continuously and transparently
manages the automatic reconstruction of all intermediate makefile fragments. We therefore
simply and immediately execute gmakdakws:

...vl/cmt> gmake QUIET=1

...... > (Makefile.header) Rebuilding constituents.make

------ > (constituents.make) Rebuilding setup.make Linux-i686.make [1]
setup.make ok

...... > (constituents.make) Rebuilding library links

------ > (constituents.make) all done

------ > (constituents.make) Building Foo.make (2]

Library Foo

...... > (constituents.make) Starting Foo

------ > (Foo.make) Rebuilding ../Linux-i686/Foo_dependencies.make [3]

rebuilding ../Linux-i686/Fo0A.o
rebuilding ../Linux-i686/FooB.o
rebuilding library

------ > Foo : library ok

------ > Foo ok

Installing library libFoo.so into /home/arnault/mydev/InstallArea/Linux-i686/lib
installation done [4]

------ > (constituents.make) Foo done

all ok.

Linux-i686.make ok
gmake[2]: ‘config’ is up to date.
gmake[2]: ‘all’ is up to date.

1. Some intermediate makefile fragments are automatically built to reflect the current

effective set of Makefile macros deduced from the configuration (readtfreom
requirements file). These fragments are automatically rebuilt (if needed) each time
one of therequirements file changes.

2. Each component of the package (be it a partidideary or aparticularexecutable
will have itsown makefilefragment (named/${CMTCONFIG}/<name>.[n]mak|[e]

). This dedicatednakefiletakes care of filling up the library and creating the shared
library (on the systems where this is possible).

3. The directory which is used for the binaries (i.e. the results of compilation or the
libraries) has been automatically created by a generic fardies) which is defined
within [N]Makefile.header . A new binary directory will be created each time a new
value of theCMTCONFIG environment variable is defined otag is provided on the
command lingo make .

4. An automatic installation mechanism is applied for all successfullytindries.

or, for nmake:

...vl/cmt> nmake /f nmake

This mechanism relies on sormenventionamacrosandincrementatargetsused within
the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It's quite important to understand the list of possible customization macros, since

19

this is the main communication medidratweenrCMT and the package manager. See the
completetableof those conventional macro when you want to interact with the standard
CMT behaviour.

9.2 - Working on an application

Assume we now want to add a test program to our development. Then weacreate
FooTest.cxxsource, and generate the associated makefile (specifying that it will be an
executable instead of a library)

csh>cd ../src
csh> emacs FooTest.cxx

csh>cd ../cmt
csh> vi requirements

application FooTest FooTest.cxx

So that we may simply build the complete stuff by running :

> [glmake QUIET=1

------ > (Makefile.header) Rebuilding constituents.make

------ > (constituents.make) Rebuilding setup.make Linux-i686.make
setup.make ok

------ > (constituents.make) Rebuilding library links

------ > (constituents.make) all done

------ > (constituents.make) Building Foo.make

Library Foo

------ > (constituents.make) Starting Foo

------ > Foo : library ok

------ > Foo ok

installation done

------ > (constituents.make) Foo done

------ > (constituents.make) Building FooTest.make

Application FooTest

------ > (constituents.make) Starting FooTest

------ > (FooTest.make) Rebuilding ../Linux-i686/FooTest_dependencies.make
rebuilding ../Linux-i686/FooTest.0

rebuilding ../Linux-i686/FooTest.exe

------ > FooTest ok

Installing application FooTest.exe into /home/arnault/mydev/InstallArea/Linux-i686/bin
installation done

------ > (constituents.make) FooTest done

all ok.

Linux-i686.make ok

gmake|[2]: ‘config’ is up to date.

gmake[2]: ‘all’ is up to date.

Which shows that prograntooTest.exehas been built from our sources. Assuming now
that this program needs to acctss-00 library, we’ll just add the following definition in

therequirements file :

macro Foo_linkopts " -IFoo "\
WIN32 " $(FOOROOT)/$(Foo_tag)/Foo.lib "

20

TheFoo_linkopts conventional macro will be automatically inserted witthia
use_linkoptsmacro. And the shared library location will be automatically set to the
installationareas.

It is also possible to select extra tag sets when running gmake as follows (in this example we
first cleanup the previous build and rebuild with debug options added to the compiler and
linker commands)

> [glmake cleanup
> [glmake CMTEXTRATAGS=debug

Like all other make macros used to build a component ale linkopts will be specified
within the requirements which gives severdlenefits:

® variants of the macro definition can be provided
® monitoring featuresf CMT such aghe cmt show macroFoo_linkopts command can
be used later on

® macros defined this way may be later on inherited by client packageswihicise
our package.

9.3 - Working on a test or externalapplication

It is also possible to work asiestorexternalapplication, ie. when one does not wish to
configure the development for this applicatimingCMT . Even in this case, it is possible
to benefit from the packages configuresingCMT by partiallyusingCMT , just forused
relationships.

Here, no special convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to descrébesiquirements file the
userelationships, as well dsemake macro definitions, quite similarly to the package
entirely configuredusingCMT .

Most of the options provided liliecmt user interface are still available in thesaditions.

9.4 - Construction of a globalenvironment

A software base generally consistgrianypackages some of themprovidinglibraries or
documents othergprovidingapplications, some providing both, some providijugt glues
towards external softwaproducts.

On another view, this software base may a mix of packages shared between several projects
and sets of packages specific to various projects. One may have several software bases as
well (combined usinghe CMTPATH environmentwariable).

In such contexts, it is often desirable that a given project defines its own selection of all
existing packages. This can easily be deite CMT by defininga projectpackage,
containingonly usestatements towards the appropriate selection of packages for this
particularproject.

21

Let’s consider as an example the project naMgBroject . We may create the package
namedMyProject similarly to any other package

csh>cd ...
csh> cmt create MyProject v1 /ProjectB

Thenthe requirements file of this new package will simply contain a séuse
statements, defining thafficial set of validated versions of the packages required for the
project. This mechanism also represents the nofigitobal releasetraditionally addressed
in configuration managemeanvironments

package MyProject

use Cm v7r6

use Db v4r3

use El v4r2

use Su v5

use DbUI vir2 Db

use EIUI virl El

use VSUUI v3 Su/VSU
use VMM v1

use VPC v3

Then any user wanting to accessdbecalledofficial release of the package set appropriate
to the projecMyProject will simply do (typically within its login shell script)

a login script

source /ProjectB/MyProject/vl/cmt/setup.csh

Later on, future evolutions dfe MyProject package will reflect progressive integration
steps, whictvalidatethe evolutions of each referengeackage.

10 - Defining a documentgenerator

In a Unix environment, documents are bugingmake (well generallyits gnuflavour) or

nmake in Windows environments. The basic mechanism provid&MT relies onmake
fragmentpatternscontaining instructions on how to rebuild document pieces. Many such
generators are provided BMT itself so as to take care of of the most usual cases (e.qg.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones prdwdeM T . This

mechanism is very similar to the definition or re-definitiommafcrosor environment variables in
that every new generator has to be first declaredrequirements file belonging to a packade
CMT actually declares all its default generators wittinrequirements file), allowing all its

client packages to transparently acquire the capacity to generate documentsart.that

CMT manages two categories of constituents:
1. ApplicationsandLibraries are handled using pre-defined make fragments (mainly related
with languages) and behaviour.
2. Documentoffer a quite general framework for introducing completely new behaviours

22

through user-defined make fragments. This includes actually generating documents, but also
simply performing an operation (in which case sometimagal@ocuments produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new documeéynes.

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes named "document-style"), which
corresponds to a dedicated make fragment of that name. Then, when specifledimant
statement, this make fragment will instanciatedonce or several times (typically once per

source file) to construct a complete and functional make fragment, containing one main target.
Both the resulting make fragment and the make target will have the namecohgiguent.

10.1 - An example : the texdocument-style

This section discusses one simple example (the production of postscript from latex files)
available in thestandardCMT distributionkit.

Converting a latex source file into a postcript output implies to chain two text processors,
with an intermediate dormat.

The fragment described here exactly performs this sequence, taking care of intermediate file
deletion. The document style is named "tex" (the associated fragment shown here and
named "tex" is actually providday CMT itself, and can be looked iat
${CMTROOT}/fragments/tex .):

tex
${CONSTITUENT} :: ${FILEPATH}Y/${NAME}.ps

${FILEPATH}${NAME}.dvi : ${FULLNAME}
cd ${doc}; latex ${FULLNAME}

${FILEPATH}/${NAME}.ps : ${FILEPATH}Y${NAME}.dvi
cd ${doc}; dvips ${FILEPATH}/${NAME}.dvi

${CONSTITUENT}clean :
cd $(doc); /bin/rm -f ${FILEPATHYS${NAME}.ps ${FILEPATH}/${NAME}.dvi

® They are declared iine CMT ’'s_requirementdile as follows :
make_fragment tex -header=tex_header

where:
1. "tex" represents both the fragment name and the document style.

2. the-header=tex_headeroption indicates that the generated makefile fragment
will first include this header (which is actually an empty file in this case)

23

® A user package willing to apply this behaviour will have to include in
its requirementdile a statement similar to the following:

document tex MyDoc -s=../doc docl.tex doc2.tex

where:
1. The first parameter "tex" is the document-style
2. The second parameter "MyDoc" is used for building the constituent’s makefile
(under the name MyDoc.make) and for providing the make target "MyDoc".
3. The other parameters (docl.tex and doc2.tex) are the sources of the document.
Explicit location is required (since default is currently defined to be ../src)
4. The constituent’s makefile MyDoc.make is built as follows :

1. Install a copy of th& CMTROOT/fragments/make_headergeneric
fragment

2. Install a copy othe $SCMTROOT/fragments/tex_headerfragment
3. For each of the sources, install a copy of the fragment "tex"
4. Install a copy othe SCMTROOT/fragments/cleanup_headerfragment

The result for our example:

—========== MyDOC,make

Document MyDoc

Generated by

@echo 'MyDoc’

docl_dependencies = ../doc/docl.tex
doc2_dependencies = ../doc/doc2.tex

MyDoc :: ../doc/docl.ps

../doc/docl.dvi : $(doc)docl.tex
cd ${doc}; latex $(doc)docl.tex

../doc/docl.ps : ../doc/docl.dvi
cd ${doc}; dvips ../doc/docl.dvi

MyDocclean ::
cd $(doc); /bin/rm -f ../doc/docl.ps ../doc/docl.dvi

MyDoc :: ../doc/doc2.ps

../doc/doc2.dvi : $(doc)doc2.tex
cd ${doc}; latex $(doc)doc2.tex

../doc/doc2.ps : ../doc/doc2.dvi
cd ${doc}; dvips ../doc/doc2.dvi

MyDocclean ::
cd $(doc); /bin/rm -f ../doc/doc2.ps ../doc/doc2.dvi

clean :: MyDocclean

24

cd.

MyDocclean ::

10. 2 - How to create and install a new documerdtyle

This section presents the general framework for designing a docgererator.

1. Select a name for the document style. It should not clash with existing on#se(use
cmt showfragments for a complete list of document types currently defined).

2. A fragment exactly named after the document style name must be installed into a
subdirectorynamedfragments belowthecmt branch of a given package (which
becomeshe provider package).

3. Optionally, two other fragments may be installed into the same subdirectory, one of
them will bethe headerof the generated complete fragment, the other will hieaitier

4. Thosefragmentamustbe declared in theequirementdile of the provider package as
follows:

make_fragment <fragment-name> [options...]

where options may be :

-suffix=<suffix> | provide the suffix of the output files (without the dot)

rovide another make fragment meant to be prepended to the

- =< .
header=<header., \stituent's make fragment.

provide another make fragment meant to be appended to the

-trailer=<trailer> .
trailer=<trailer constituent’s make fragment.

install the automatic generation of dependencies into the constituent’s

-dependencies make fragment

Once a fragment is installed and declared, it may be usadylient package (ie a
packageusingthe provider), and queried upon using tbenmand

> cmt show fragment <fragment name>
which will show where this fragment is defined (ie. in which of the psettages).
The cmt showfragments commands lists all declarégments.

If a package re-defines an already declared make fragment, ie it provides a new copy of the
fragment (possibly with new copies of the header and the trailer), and declares it inside its
requirements file, then this package becomes the new provider for the dostyteent

25

For building a fragment, one may use pre-defined generic "templates” (which will be
substituted when a fragment is copied into the final constitueratisfile).

CONSTITUENT the constituent name

CONSTITUENTSUFFIX| the optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)
FILENAME the complete source file name (only including the suffix)
NAME the short source file name (without directory and suffix)
FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

(only available in headers) the list of outputs, formed by a set gf
OBJS expressions :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

Templates must be enclosed between ${ and } or between $(and) and will be substituted at
the generation time. Thus, if a fragment contains the following text

$(${CONSTITUENT]}_output) ${NAME}${SUFFIX}
then, the expanded constituent’s makefile will contain (refering to the étathple)
$(MyDoc_output)docl.ps

Which shows that make macros may be dynamiggherated.

26

{ r .. jomt /fragment s/

| s /doc_header
¢ /doc
v /doc_trailer 4

/Client package

' doc header
package doc_provider
‘make fragment doc header doc (atxt)
--h:ﬂ:r"t doc_trailer

- -make_fragment doc \
~header=doc_header \
—trailer=doc_trailer

' doc (b.tx1)

doc (c.mxt)

Prowvider package

| doc tranker

. make

document doc mydoc a.txt b.txt c.txt

3 - The architecture of documegeneration.

10. 3 - Examples

1. rootcint

It generates C++ hubs for the Cint interpreteRoot.

=—======== rootcint
(src){NAME}.cc :: ${FULLNAME}
${rootcint} -f (src){NAME}.cc -c ${FULLNAME}

2. agetocxx and agetocxx_header.

It generates C++ source files (xxx.g files) from Atlas’ AGE descrifdiles.

—=====—=== agetOCXX
output=$(${CONSTITUENT}_output)

$(output)$5{NAME}.cxx : $(${NAME}_cxx_dependencies)

(echo '#line 1 "${FULLNAME}"; cat ${FULLNAME}) > /tmp/${NAME}.gh.c

gcc -E -1$(output) $(use_includes) -D_GNU_SOURCE \
cd ${output}; $(agetocxx) -0 ${NAME} -ohd ${FILEPATH}\
-ohp ${FILEPATH} /tmp/${NAME}.gh

rm -f tmp/${NAME}.gh /tmp/${NAME}.gh.c

cd $(bin); $(cppcomp) $(use_cppflags) S(S{CONSTITUENT} cppflags) \
$(${NAME}_cppflags) ${ADDINCLUDE} $(output)5{NAME}.cxx

cd $(bin); $(ar) $(${CONSTITUENT}ib) ${NAME}.o; /bin/rm -f ${NAME}.o

27

========= agetocxx_header
${CONSTITUENT}lib = $(bin)lib${CONSTITUENT}.a
${CONSTITUENT}stamp = (bin){CONSTITUENT}.stamp
${CONSTITUENT}shstamp = (bin){CONSTITUENT}.shstamp

${CONSTITUENT} :: dirs ${CONSTITUENT}LIB
@/bin/echo ${CONSTITUENT} ok

${CONSTITUENTILIB :: $(${CONSTITUENT}ib) $(${CONSTITUENT}shstamp)
@/bin/echo ${CONSTITUENT} : library ok

$(${CONSTITUENT}ib) $(${CONSTITUENT}stamp) :: ${OBJS}
$(ranlib) $(${CONSTITUENT}ib)
cat /dev/null >$(${CONSTITUENT}stamp)

$(${CONSTITUENT}shstamp) :: $(${CONSTITUENT}stamp)
cd $(bin); $(make_shlib) $(tag) ${CONSTITUENT}\
$(${CONSTITUENT}shlibflags); \
cat /dev/null >$(${CONSTITUENT}shstamp)

It must be declared as follows :

make_fragment agetocxx -suffix=cxx -dependencies -header=agetocxx_header

11 - The tools provided byCMT

The set of conventions and tools providg®€MT is mainly composed of :

e the syntax othe requirements file,

® and thegenerakmt user interface, available themgr branch othe CMT package.
Thesetupscript found intheCMT installation directory actually adds its location to the definition
of thestandartdNIX PATH environment variable in order to give direct access tondiecmt
user interface.

The sections below will detail the complete syntax of tbguirements file since it is the basis
of most information required to run the tools as well as the main commands available theough
cmt userinterface.

11.1 - The requirementsfile

11.1.1 - The general requirementssyntax

® A requirements file is mad#f statements each describing one named
configuration parameter.

Statements generally occupy one single line, but may be split into several lines
using the reverse-slash character (in this case the reverselsa@abtemustbe
the last character on the line or must be only followed by sgaacters).

28

Each statement is composed of words separated with spaebsilations.
The first word of a statement is the name of the configuratoameter.

The rest of the statement provides the value assigned to the configuration
parameter.

® \Words composing a statement are separated with space or tab characters. They
may also be enclosed in quotes when they have to include space or tab characters.
Single or double quotes may be freely used, as long as the same type of quote is
used on both sides of tierd.

Special characters (tabs, carriage-return and line-feed) may be inserted into the
statements using an XML-basednvention:

tabulation <cmt:tab/>
carriage-return <cmt:cr/>

line-feed <cmt:If/>

e Comments : they start withe# character and extend up to the end of the current
line.

The complete syntax specification is availabli&ppendix.

11.2 - The concepts handled in the requirementsle

11.2.1 - The package structuring style

11.2.2 - Meta-information : author, manager

The author and manageames

11.2.3 - package,ersion

The package name and version. These statements areipfoehational.

11.2.4 - Constituents : application, library, document

Describe the composition of a constituent. Application and library correspond to the
standard meaning of an application (an executable) and a library, while document
provides for a quite generic and open mechanism for describing any type of document
that can be generated fraguources.

29

Applications and libraries are assigned a name (which will correspond to a generated
make fragment, and a dedicated mtkget).

A document is first associated with a document type (which must correspond to a
previously declared make fragment). The document name is then used to name a
dedicated make fragment and a mtkget.

Various options can be used when declariograstituent:

=

b

option validity usage
When used in a Windows environment,
-windows applications | generates a GUI-based application (rathe
than a console application)
-no_share libraries do not generate the shared library
no_ static libraries plo not generate the static librgrgot yet
- implemented
i applications, ,
prototypes libraries do generate the prototype header files
-no_prototypes a_1pp||(_:at|ons, do not generate the prototype header file$
libraries
o generate a check target meant to executsg
-check applications . o
rebuilt application
_ install the constituent within this group
-group=group-name any
target
o applications, | provide a suffix to names of all object files
-suffix=suffix . : . .
libraries generated for thisonstituent(1)
o explicitly import for this constituent the
. _ applications,
-import=package . : standard macros from a package thatthas
libraries . .
-no_auto_importsoption set
variable-name=variable-valtian define a variable and its value to be given
y the makdragment (2)

When several constituents need to share source files, (a typical example is for
building different libraries from the same sources but with different compiler
options), it is possible to specify an optional output suffix with the
-suffix=<suffix> option. With this option, every object file name will be
automatically suffixed by the character stringsuffix> ", avoiding name

conflicts between the different targets, as in the folloveixgmple:

library AXt -suffix=Xt *.cxx
library AXaw -suffix=Xaw *.cxx

30

the

It's possible to specify in the list of parameters one or more pairs of
variable-name= variable-value (without any space characters arotimel "="
character), such as in the nexample:

make_fragment doc_to_html (2)
document doc_to_html Foo output=FooA.html FooA.doc (2) (3)

1. This makefile fragment is meant to contain some text conversion actions and
definesa documentype nameddoc_to_html.

2. This constituent exploits the document tyfme_to _htmlto convert the
sourceFooA.docinto an html file.

3. The user defined template variabemedoutput is specified and assigned
thevalueFooA.html . If thefragmentdoc_to_html contains the string
${output} , then it will be substituted to this value.

11.2.5 - Groups

Groups permit the organization of the constituents that must be consistently built at the
same development phases or with similar constraints.

Each group is associated with a make target (of the same name) which, when used in
the make command, selectively rebuilds all constituents ofjtbigp.

The default group (into which all constituents are installed by defamgneedall ,
therefore, running make without argument, activates the default {grgat).

As a typical usage of this mechanism, one may examplify the case in which one or
several constituents are making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might require a controled re-build.
This is especially useful for having these constituents only rebuilt on demand rather
than rebuilt automatically when the default make commanghis

One could, for instance specify within the requirements file
Constituents belonging to the default all group
... constituents without group specification ...

Constituents belonging to specific groups

library Foo-objy -group=objy < sources making use of Objectivity >
application FooGUI -group=graphics < sources making use of Qt >
application BarGUI -group=graphics < sources making use of Qt >

(Beware of the position of the -group option which must be located after the constituent
name. Any other position will be misunderstooCIWT)

31

Then,runninggmakeall would only rebuild the un-grouped constituents, whereas
running

> gmake objy
> gmake graphics

in the context ofhe Foo package wouldebuildobjy relatedor graphicsrelated
constituents.

11.2. 6 - Languages

Some computer languages are known by deby@MT (C ,C ++,Fortran77 ,Java,
lex ,yacc). However it is possible to extend this knowledge to any other langage.

We consider here languages that are able to produce object filesduooes.

Let's take an example. We would like to install support for Fortran90. We firstthave
declarethis new language suppactCMT within therequirements file of one of our
packages (Natice that it's not at all requiredrtodify CMT itself since all clients of
the selected package will inherit the knowledge ofldmguage).

The language support is simptgmedfortran90 and is declared by the following
statement:

language fortran90 \
-suffix=f90 -suffix=F90 \ [1]
-linker=%(fo0link) \ [2]
-preprocessor_command=$(ppcmd)

1. The recognized suffixes for source files vad {90 andF90

2. The linker command used to build a Fortran90 application is described inside the
macronamedf90link (which must defined in this requirements file but which can
also be overridden bglients)

The language support beingmedfortran90 , two associated make fragments are
expected, one under the nafodran90 (for building application modules), the other
with thenamefortran90_library (for modules meant to be archived), both without
extension.

These two fragments should be installed infthgments sub-directory of the cmt
branch of oupackage.

Due to the similarity of the example to fortran77, we may easily provide the expected
fragments simply by copying the f77 fragments foim@MT (thus thefragments
${CMTROOT}/fragments/fortran and${CMTROOT}/fragments/fortran_library

These fragments make usetlod fcomp macro, which holds the fortran77 compiler
command (through thier macro).

macro for 77"\

.rﬁ.acro fcomp "$(for) -¢ $(fincludes) $(fflags) $(pp_fflags)"

32

We therefore simply replace these macros by new maaraed90compandfoo ,
defined adollows:

macro f90 "f90"

.n.wlacro f90comp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

Some languages (this has been seen for example in the IDL generators in Corba
environments) do provide several object files from one unique source file. It is possible
to specify this feature through the (repetitivejtra_output_suffix option likein:

language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

where, in this case, two object files are produced for each IDL source fileaoresk
name>.o the othemamedk name>_skel.o.

11.2.7 - Symbols
Thealias keyword is translated into a shell al@efinition,
Thesetkeyword is translated into an environment variaigénition.
Themacro keyword is translated intoraake 's macrodefinition.

Thepath keyword is translated intogath -like environment variable, which is
supposed to be composed of search paths separated with colon chargctendnix)
or semi-colorcharacters’ (on Windows). However, it is highly recommended to
construct such a variable by iteratively concatenating individual items one logioge
path_appenar path_prepend

Variants of these keywords are also provided for modifying already defined symbols.
This generally happens when a package needs to modify an inherited symbol (ie. which
has been already defined by a used package). Througbytverdsset append,
set_prepend, set_remove, macro_append, macro_prepend, macro_remove,
macro_remove_all, path_append, path_prepend, path_removeone can append or
prepend a text to the existing symbol value or remove a part fratmeipath_remove
keyword removes all individual search pathatcontainthe specifiedub-string.

The translations occur while running either the setup scripts (for alias, set or path) or
the make command (fonacro).

All these definitions follow the sanpattern:

symbol : symbol-typesymbol-namelefault-valug tagvalue ...]

The symbol-name identifies the symbol for modification operations. The default-value
is optionally followed by a set of tag/value pairs, each representing an alternate value
for this symbol. Be aware that there is only one hame space for all kinds of symbols.
Therefore, if a symbol was originally defined usamgacro statement, using
set_appendio modify it will produce an undefined result.

33

The tag is used to select one alternate value to replace the default value, when one of
the following condition isnet:

It matches the value of the CMTSITE environment variable (or registry)

It matches the value provided by the uname Unix command (when available)

It matches the value of the CMTCONFIG environment variable (or registry)

It matches the value specified in tii@g=tag argument to the cmt command.

It matches one user defined tag (see the tag keyword) which itself is associated
with a matching tag (Note that this is a recursleénition).

Examples of such definition are

package CMT

macro cflags "\

LynxOS-VGPW2 "-X"\

insure "-std1" \

HP-UX "+Z"\

hp700_ux101 "-fpic -ansi"\

alpha "-std1"\

alphat "-std1" \

SunOS "-KPIC"\

WIN32 "Inologo /DWIN32 /MD /W3 $(includes) /c’
macro pp_cflags "\

LynxOS-VGPW2 "-DVGPW2"\

HP-UX "-D_HPUX_SOURCE" \

alphat "-DCTHREADS" \

AlIX "D_ALL_SOURCE -D_BSD"\

Linux "-Di586"
macro ccomp "$(cc) -¢ $(includes) $(cdebugflags) $(cflags) $(pp_cflags)" \

VisualC "cl.exe $(cdebugflags) $(cflags) $(pp_cflags)"
macro clinkflags

macro clink "$(cc) $(clinkflags)" \
VisualC "link.exe /nologo /machine:IX86 "

11.2.8 - use

Describe the relationships with other packages; the generic syntax is

use <package> [<version> [<root>]]

Omitting the version specification means that the most recent version (ie. the one with
highest ids) that can be found from the search path list will be automasiekdbted.

The root specification can be relative (ie. on Unix it does not contain a leading '/’
character). In this case, this prefix is systematically considered when the package is
looked for in the search path list. But it can also be absolute (ie. with a leading '/’
character on Unix), in which case this path takes precedence over the standard search
path list (se€CMTPATH).

Examples of such relationships are

34

Packages installed in the default root :
use OnX v5r2

use CSet v2r3

use Gb v2rl

A package installed in a root one step below the root :
use CS v3rl virgo

Back to the default root :
use Cmv7r3

Get the most recent version of CERNLIB
use CERNLIB

By default, a set of standard macros, which are expected to be specified by used
packages, is automatically imported from them {begetailedist of these macros).
This automatic feature can be discarded uiieg

-no_auto_importsoption to the use statement, or re-activated using the
-auto_imports . When it is discarded, the macros will not be transparently inherited,
but rather, each individual constituent willing to make use of them will have to
explicitly import them using thémport=< package> option.

Whenausestatement is i private section, the corresponding used package will only
be reached WvhenCMT operations occur in the context of the holder package.
Otherwise (ie if the operation occurs in some upper level client package, then this
privately used package will be entirely hiddém.his behaviour follows a very similar
pattern to the private or public inheritance©#+). Suppose we have the following
organization:

package B

private
use Cvl
use Dv1

e all operations done in the context of packageilB seeboth packages C and D
® all operations done in the context of packageilh seeboth packages B and D,
but not packag€

11.2.9 - patterns
Often, similar configuration items are needed over a set of packages (sometimes over

all packages of a project). This reflects either similarities between packages or generic
conventions established by a project oeam.

35

Typical examples are the definition of the search path for shared libraries (tiineugh
LD_LIBRARY_PATH environment variable), the systematic production of test
applicationsetc.

The concept of pattern proposed here implements this genericity. Patterns may be
eitherglobal, in which case they will be systematically applied onto every package,
local (the default) in which case they will be applied on demand only bypsaitage.

The general principle of a pattern is to associate a templatexf)(sett statement(s)

with the pattern name. Then every time the pattern is applied, its associated statements
are applied as if they were directly specified in the requirements file, replacing the
template with its current value. If several statements are to be associated with a given
pattern, they will be separated witie" ; " separator pattern (beware of really

enclosing the ";" between two spad®aracters).

The general syntax for defining a pattern in a requirementsfile
pattern : pattern[-global] pattern-name&mt-statement

[; cmt-statement..]

Pattern templates are names enclosed between the '<’ and ">’ characters. A set of
predefined templates are automatically providg@MT :

package the name of the current package

PACKAGE | the name of the current package in upper tase

version the version tag of the current package

path the access path of the current package

Then, in addition, user defined templates can be installed within the pattern definitions.
Their actual value will be provided as arguments to the apply_patsament.

User defined templates that have not been assigned a value when the pattern is applied
are simplyignored.

Someexamples:
1. Changing the standard include segvakh.

The standard include path is set by defaui{tqpackage>_root}/src. However,

often projects need to override this default convention, and typical example is to
set it to a branch named with the package name. This convention is easily applied
by defining a pattern which will apply the include_path statemefutlasvs:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a packagamedPackA will expand this pattern dellows:

36

include_path ${PackA_root}/PackA/
2. Providing a value ttheLD LIBRARY_PATH environmentariable

On some operating systems (eg. Linux), shared library paths must be explicited,
through an environment variable. The following pattern can automate this
operation:

pattern Id_library_path \
path_remove LD_LIBRARY_PATH "/<package>/" ;\
path_append LD_LIBRARY_PATH ${<PACKAGE>ROOT}/${CMTCONFIG}

In this example, the pattern was not set global, so that only packages actually
providing shared libraries would be concerned. These packages will simply have
to apply the pattern dellows:

apply_pattern Id_library_path

The schema installed by this pattern provides first a cleantine of
LD_LIBRARY_PATH environment variable and then the new assignment. This
choice is useful in this case to avoid conflicting definitions from two different
versions of the sanygackage.

3. Installing a systematic test application infkckages

Quality assurance requirements might specify that every package should provide a
test program. One way to enforce this is to build a global pattern declaring this
application. Then every make command would naturally ensure its actual
presence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern (<other_sources>) permits the package to
specify extra source files to the test application (the pattern assumes at least one
sourcefile<package>test.cxx).

11.2.10 - cmtpath_patterns

Those patterns act quite similarly to the patterns previously described, ie they defines a
set of CMT statements to be applied in a geneag.

The only varying parameter that can be specified here is the token<path>which stands
for any entry in the CMTPATHist.

Therefore whenever a cmtpath_pattern is defined and if it specifies the
expression<path>in its definition, then an implicit loop over all entries of the
CMTPATH list will be run and one instance of the pattern will be applied for each
entry in the CMTPATHist.

As an example suppose wefine

37

path CMTPATH "/ProjectA"
path_append CMTPATH "/ProjectB"

cmtpath_pattern \
macro_prepend pp_cppflags " -I<path>/InstallArea/include "

this will assemble one -1 option (towards the preprocessor) per entry in CMTPATH,
implementing a mechanism for a multiple installation area for header files. In the
example above the resulting macro i

-1/ProjectA/InstallArea/include -1/ProjectB/InstallArea/include

11.2.11 - branches

Describe the specific directory branches to be added while configuripgtkage.

branches <branch-name> ...

These branches will be created (if needed) at the same lehelcast branch. Typical
examples of such required branches tmainclude , testor data .

11.2.12 - Strategyspecifications

Users can control the behaviafrCMT through a set of strategy specifications. The
current implementation provides such control over several aspects

1. The versiorstrategy
the way version tags are interpreted and compared tootfash

The following keywords aravailable:

This is the default behaviour. Version tags truely consider majpr
best_fit ids, minor ids and patch ids with their complete backward
compatibility semantics

w

Same as best_fit except that different major ids are not seen 3
best_fit_no_check incompatible. The greatest id (for major, minor and patch ids)
always selected

w

first_choice The first version tag specified in the use chain is selected
last_choice The last version tag specified in the use chain is selected
keep_all Internal use only : all referenced versions are kept

2. The buildstrategy

38

This controls and parameterized the building process the way makefile fragments
used for applications anitbraries.

The following keywords aravailable:

C source files will automatically produce a header file

prototypes containing a prototype of all global entry points

no_prototypes No production of automatic prototype header files for C soufces

The installation area mechanisms are activated. This implie
with_install_area applying the cmtpath_patterns that may be defined (eg in CMT
itself)

)

without_install_area | The installation area mechanisms are inhibited

3. The setustrategy

This controls various actions that may be performed during the sourcing of the
setupscripts.

The following keywords aravailable:

An environment variable <PACKAGE>CONFIG will be generated for all

config packages in the dependency chain

no_config | The<PACKAGE>CONFIG environment variable is not generated

An environment variable <PACKAGE>ROOT will be generated for all

root packages in the dependency chain

no_root The<PACKAGE>ROOT environment variable is not generated

The automatic cleanup operation to the current installation area is

cleanu
P launched

The automatic cleanup operation to the current installation area is nc
launched

—

no_cleanup

11.2.13 - setup_script,cleanup_script

Specify user defined configuration scripts, which will be activated together with the
execution of the maisetupandcleanupscripts.

The script names may be specified without any access path specification, in this case,
they are looked for in themt or mgr branch of the package itself. They may also be
specified withoutany.cshor .sh suffix, the appropriate suffix will be appended
accordingly when needed. Therefore, when such a user configuration sepigtifsed,
CMT expects that thecorresponding shell scripts actually exist in the appropriate
directory(thecmt branch by default) and is provided in whatever format is appropriate
(thus suffixedby .cshand/or.sh).

39

11.2.14 -include_path

Override the specification for the default include search path, which is internally set to
${< package>_root}/src.

Specifying thevaluenone(a reserved CMT keyword) means that no default include
search path is expected from CMT, and thus no -1 compiler option will be generated by
default (generally this means that user include search paths should be specified
include_dirsinstead).

11.2.15 -include_dirs

Add specifications for non-standard include ac@edhs.

11.2.16 - make_fragment

This statement specifies a specialized makefile fragment, used as a building brick to
construct the final makefile fragment dedicated to builcctirestituents.

There are basically three categories of such fragments :
1. some are providelly CMT itself (they correspond to its internal behaviour)
2. others handle the language support
3. and the last serve as specialized document generators.

The fragments defined CMT canbe:

® those used to construct the application or library constituents. Their semantic is
standardized (they are all associated wildinguagestatement in the CMT
requirements file).

c c_library cpp cpp_library lex lex_library fortran fortran_library yacc
yacc_library jar jar_header java java_copy java_header check_java
cleanup_java

e those used internally by CMT as primary building blocks for assembling the
makefile. (Generally developers should not see them).

cleanup_objects application make_setup_nmake constituent
application_header constituents_header buildproto protos_header
0s9_header dependencies check_application dependencies_and_triggers
check_application_header document_header library cleanup library_header
cleanup_application library_no_share cleanup_header make_header
make_setup cleanup_library make_setup_header

40

e some document generatavhich maybe used if needed, but are not mandatory:

installer installer_header readme readme_header readme _trailer
readme_use dvi tex generator generator_header

® those used to generate configuration files for MSVisualC++:

dsp_windows_header dsw_all_project dsw_all _project_dependency
dsw_all_project_header dsw_all project_trailer dsw_header dsw_project
dsw_trailer dsp_all dsp_application_header dsp_contents

dsp_library _header dsp_shared_library _header dsp_trailer

Language fragments should provide two forms, one for the applications (in which case
they are named exactly after the language name eg c, cpp, fortran) and the other for the
libraries (in which case they hattee _library suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++, Fortran, Java, Lex, Yacc) is
provided by CMT itself but it is expected that projects add new languages according to
their needs. Event if the make fragment meant to be the implementation of a language
support is declared, the language support itself must be declared toahasing
languagestatement

All make fragments are provided as (suffixless) files which must be locatled in
fragments sub-directory inside the cmt/mgr branch of one package. They must also be
declared in the requirements file (throubk make_fragmentstatement) so as to be
visible.

A package declaring, and implementing a make fragment may override a fragment of
the same name when it is already declared by a used package. This implies in particular
that anypackagemay freely override any make fragment providgdCMT itself

(although in this case a deep understanding of what the original fragment does is
recommended).

Makefile fragments may take any form convenient to the document style, and some
special pre-built templates (ste2 appendix) can beused in their body to represent
running values, meant to be properly expanded at actual generatian time

CONSTITUENT | the constituent name

FULLNAME the full source path
FILENAME the source file name without its path
NAME the source file name without its path and suffix

FILESUFFIX the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

41

11.2.17 - public, private

Introduce a sectiofor public or private statements. This only concerns the definition
of symboils or the specification of usaationships.

Symbols are the environment variables or aliasedJnia environment oaslogical
namesor symbolsn aVMS one).Macrosto be used within makefiles can also be
defined at this level. Public symbols are meant to be exported to any external user of
the package whereas private ones are only defined fpati@agelevelopper

Currently the selection between these two categories is done when the setup script is
executed : if it is executed while actually beinghiacmt branch of the package, the
developper category is assumed. If the script is executed from another directory the
user category iassumed.

Public use relationships expose the complete sub-tree to the package clients, whereas
private ones entirely hide the sub-tree, expanding it only when the operator really acts
from within the context of the package. It should be noticed that private use
relationships are completely unvisible from clients, which implies that none of the
definitions (not only symbols) will bset.

However, the cmt broadcast command is configured to always ignore the private
specification and will traverse the sub-trees whether they are public or private (in order
to ensure the hierarcldependencies)

11.2.18 -tag
Provide tagdefinitions.

A tag is a token which can be used to select particular values of symbols. Generally a
tag need not being explicitly declared, since the reference to it will declare the tag
automatically. However, tags may be usedamea particular association of several
other tags. In this case, this association must be declared aianirementdile as
follows :

tag <association-tag-name> <tagl> <tag2> ...

eg:

tag Linux-gcc Linux gcc

This definition implies thaivhenLinux-gccis true, therbothLinux andgccaretrue.

This can be exploited to trigger via only one tag, the activation of several individual
tags, each signing a particular condition (in our exarni@debugcondition andhe
Linux environment).

However, it is always possible to dynamically associate several tags bythesing
tag-list-style of arguments to the -tag=<tag-list>options to the cmt command driver
(such asn cmt setuptag=Linux,debug

42

Tags or associations of tags are propagated using the -tag=<tag-list>options to the cmt
command driver, but the Make command can also accept them through the
conventionamacros$(tag) and$(extra_tags) Howeverthe $(tag) macro itself can

only accept one value (instead of a list), and therefore in order to give a list of
additional tags, one should ube $(extra_tags)such asn gmake tag=Linux
extra_tags=debug

Finally, running the setup script (throutite sourcesetup.[c]shor call setup.bat
command) can also receive tag specifications ubiegag=tag-listoptions.

11. 3 - The general cmt useinterface

This utility (a shell script combined withiC application) provides a centralised access to
various commands theCMT system. The first way teseemt is to run it without
argument, this will print a minimal help text showing the basic commands and their syntax :

> cmt command [option...]
command :
broadcast [-select=list] [-exclude=list] [-local] [-depth=n]
[-global] [-begin=pattern]
[-all_packages] <command> : apply a command to [some of] the used packages
build <key> : build various components :
constituent_makefile : generate Makefile
constituents_makefile : generate constituents.make

dependencies : generate dependencies
library_links : build symbolic links towards all imported libraries
make_setup : build a compiled version of setup scripts
msdev : generate MSDEYV files
0s9_makefile : generate Makefile for OS9
prototype : generate prototype file
readme : generate README.html
tag_makefile : generate tag specific Makefile
check <key> : perform various checks

configuration : check configuration
files <old> <new> : compare two files and overrides <old> by <new> if different
version <name> : check if a name follows a version tag syntax

check_files <old> <new> : compare two files and overrides <old> by <new> if different

checkout : perform a cvs checkout over a CMT package

co : perform a cvs checkout over a CMT package

cleanup [-csh|-sh|-bat] : generate a cleanup script

config : generate setup and cleanup scripts

create <package> <version> [<path>] : create and configure a new package
filter <in> <out> : filter a file against CMT macros and env. variables
help : display this help

lock : lock the current package

lock <package> <version> [<path>] : lock a package
remove <package> <version> [<path>] : remove a version of a package
remove library_links : remove symbolic links towards all imported libraries

run <command> : apply a command
setup [-csh|-sh|-bat] : generate a setup script
show <key> : display various infos on :
all_tags . all defined tags
applied_patterns : all applied patterns in this package
author . package author
branches . added branches
clients . package clients
constituent_names : constituent names
constituents : constituent definitions
cycles : cycles in the use graph
uses : the use tree

fragment <name> : one fragment definition

43

fragments . fragment definitions

groups : group definitions

languages . language definitions

macro <name> : a formatted macro definition
macro_value <name> : araw macro definition

macros . all macro definitions

manager . package manager

packages . packages reachable from the current context
path . the package search list

pattern <name> : the pattern definition and usages
patterns . the pattern definitions

pwd . filtered current directory

set_value <name> : araw set definition

set <name> . aformatted set definition

sets . set definitions

strategies . all strategies (build & version)

tags . all active tags

uses : used packages

use_paths <target> : all paths towards the target package
version . version of the current package

versions <name> : visible versions of the selected package

system : display the system tag

unlock : unlock the current package

unlock <package> <version> [<path>] : unlock a package
version : version of CMT

cvstags <module> : display the CVS tags for a module
cvsbranches <module> : display the subdirectories for a module
cvssubpackagess <module> : display the subpackages for a module

global option :
-quiet : don't print errors
-use=<p>:<v>:<path> : set package version path
-pack=<package> : set package
-version=<version> : set version
-path=<path> : set root path
-f=<requirement-file> : set input file
-e=<statement> : add a one line statement
-home=<directory> : find a home requirements file there
-tag=<tag-list> : select specific tag(s)
-private : force navigation through private uses
-public . inhibit navigation through private uses (the default)

The following sections present the detalil of each availadriemand.

11.3.1 - cmt broadcast

This command tries to repeatedly execute a shell command in the context of each of the
used package of the current package. The used packages are listéideosinghow
usescommand, which also indicates in which order the broadcast is performed. When
theall_packagesoption, the set of packages reached by the broadcast is rather the same
as the one shown liiecmt showpackagescommand, i@llCMT packages and

versions available throught tearrenCMTPATH list.

Typical uses ofhis broadcastoperation couldbe:
csh> cmt broadcast cmt config

csh> cmt broadcast - gmake
csh> cmt broadcast '(cd ../; cvs -n update)’

44

The loop over used packages will stop at the first error occurence in the application of
the command, except if the command was preceded by a -’ (minus) sign (similarly to
the makeconvention).

It is possible to specify a list of selection or exclusion criteria set onto the package path,
using the following options, right afténe broadcastkeyword. These selectioncriteria
may be combined (eg one may comtimebeginandselectmodifiers)

sh> cmt broadcast -begin=Cm gmake Q)

sh> cmt broadcast -select=Cm gmake (2)

sh> cmt broadcast -select="/Cm/ /CSet/’ gmake (3)

sh> cmt broadcast -select=Cm -exclude=Cmo gmake (4)

sh> cmt broadcast -local gmake (5)
sh> cmt broadcast -depth=<n> gmake (6)
sh> cmt broadcast -global gmake)
sh> cmt broadcast -all_packages gmake (8)

According to the option, the loop will only operateto:

1. the first package which path contains the stfldm" , and then all other
reachable packages (in case other specifiers are used)

2. the packages which path containsshang"Cm"

the packages which path contains either the stfign/" or thestring"/CSet/"

4. the packages which path containsdtiéng"Cm" , but which does not contain
thestring"Cmo"

5. the packages at the same level as the current package

6. the packages at the same level as the current package or among the<n>first entries
in the CMTPATH list

7. the packages at any level of the CMTPATH search list
8. all the packages and versions currently available thrthe@MTPATH list

w

11.3.1.1 - Specifying the shelcommand

A priori any Unix or DOS shell command can be specified in a boadcast
command. However, it's important to understand the order of the various parsing
actions:

1. The current shell first parses the complete command line

2. CMT catches all possible options given to the broadcast command itself

3. CMT then gets the rest of the command line and makes it the shell command
to be executed during the broadcast scan.

4. This command line may be subject to template substitution (see below) by
CMT

5. Eventually the command line is passed to the local shell (which may then
perform additional parsingctions)

Considering this complex sequence of parsing, it may be appropriate to selectively
enclose the shell command passed to the broadcast action into quotes. It may even
be sometimes useful to have two levelgobtes

45

11.3.1.2 - Templates in the shelcommand

Similarly to what exists ithe patternmechanism, some standaethplatedvalues
can be embedded inside the command to be executed by the broadcast action.
They take a standard form ofemplate-name>. These templates acquire their
value on each package effectively reached during the broadcast scan, and the
effective value is substituted before launching the command. The possible
templatesare:

<cmtpath> been found

<package_ offset> The directory offset to cmtpath
<package> The package name

<version> The version of the package

The next example shows a typical broadcast command listing the header files as
expected in the conventional locatiokpackage>:

> cmt broadcast 'Is ../<package>"

Now trying [Is ... JleEvent] in /afsicern 3. JleEvent-00-00-09/cmt (149/609)

CVs KineHepMcmap.h

Now trying [Is ../Tauola_i] in /afs/cen. 3.0 Tauola_ifTauola_i-00-00-13/cmt (150/609)

CVS Jakiicc Tauola_ih Tauradh configh m_tauh tauola_iinc
Jakih ReadPDGtable.h Tauola_iicc Taurad.icc polhep.inc tauola_cblk.inc

Now trying [ls ..] in /afs/cern. ist/6.3. i 00-00-04/cmt (151/609)

Ccvs h ondition.h h "Token.h 0 "Token.h
[

One should note that when templates are used in a broadcast command, it's
important to enclose the command in quotes so as to inhibit any possible
parsing of the<> syntax by the shell.

11.3.2 - cmt build <option>

The actions associated with the build options are generally meant for internal use only,
and users will rarely (if ever!) apply themanually

All build commands are generally meant to change the current package (some file or
set of files is generated). Therefore a check against conflicting locks (ie. a lock owned
by another user) is performed by all these commands prior to execute

® [-nmake] constituent_makefile<constituent-name>

This command is internally uség CMT in the standard Makefile.header
fragment. It generates a specific makefile fragnfeaimed<constituent-name
>.make) which is used to re-build thiragment.

46

The element in the CMTPATH search list where the package has

All such constituent fragments are automatically included from the kakefile.

Although this command is meant to be used internally (and transpatsntly)
CMT when the make command is run, a developer may find useful in very rare
cases to manually re-generate the constituent fragment, usigttisand.

The-nmake option (which must precede the command) provides exactly the same
features but in a Windows/nmake context. In this case, all generated makefiles are
suffixedby .nmake instead ofmake for Unix environments. The main makefile

is expected to beamed\NMake and the standard headenamed

NMakefile.header

[-nmake] constituents_makefile

This command is internally (and transparently) use@lM in the standard
Makefile.header fragment, and when the make command is run, to generate a
specialized make fragment containing all "cmt build constituent_makefile"
commands for a givepackage.

The-nmake option (which must precede the command) provides exactly the same
feature but in a Windows/nmake context. In this case, all generated makefiles are
suffixedby .nmake instead ofmake for Unix environments. The main makefile

is expected to beamed\NMake and the standard headenamed

NMakefile.header

dependencies

This command is internally (and transparently) use@l) from the constituent
specific fragment, and when the make command is run, to generate a fragment
containing the dependencies required by a sdilece

This fragment contains a set of macro definitions (one per constituent source file),
each containing the set of fouddpendencies.

library_links

This command builds a local symbolic link towards all exported libraries from the
used packages. A package exports its libraries throughpghekage>_libraries
macro which should contain the list of constituent names corresponding to
libraries that must bexported.

library Foo ...
library Foo-utils ...

macro Foo_libraries "Foo Foo-utils"

Thecorrespondingmt removelibrary_links command will remove all these
links.

make_setup

This command is internally (and transparently) use@klM from the standard
Makefile.header fragment, and when the make command is run, to generate
another fragment containing all platform (or tag) specific mdefmitions.

47

One copy of this fragment (named<tag>.make) is created per flavour of tag used at
build time. The tag considered in this operation is either the default tag value
(obtained from the CMTCONFIG environment variable) or specified to the make
command using théag=<tag>option)

This tag specific fragment represents the actual context that was considered at the
most recent make activation. It is automatically rebuilt when one of the
usedrequirementss modified.

® msdev

This command generates workspace (.dsw) and project (.dsp) files required for the
MSDevtool.

® vsnet

This command generates workspace and project files required for the Visual.net
tool.

® 0s9 makefile

This command generates external dedicatakefilefragments for each
individual component of the package (ie. libraries or executable applications) to be
used in OS9 context. It generates specific syntaxebd@S9 operatingsystems.

The output of this tool is a set of files (hamed with the components’ name and
suffixedby .0s9make) that are meant toeincludedwithin the mainViakefile
that the developer has to wraayhow.

The syntax ofthecmt build 0s9_makefileutility is as follows:
sh> cmt build 0s9_makefile <package>
® prototype<source-file-name>

This command is internally (and transparently) use@kM from the constituent
specific fragment, and when the make command is run, to generate prototype
header files from C sourdies.

The prototype header files (named<file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C sblace

The effective activation of this feature is controled by the build strateGMT .
The build strategy may be freely and globally overridden from
anyrequirementdile, usingthebuild_strategy cmt statement, providing either
the "prototypes" or the "no_prototypesilues.

In addition, any constituent may locally override this strategy using the
"-prototypes" or "-no_prototypestiodifiers.

® readme

48

This command generates a README.html file into the cmt branch of the
referenced package. This html file wilclude

O atable containing URLSs to equivalent pages for all used packages,
O a copy of the local README file (if it exists).
® tag makefile

This command produces onto the standard output, the exhaustive list of all macros
controledby CMT , ie. those defined in the requirements files as well as the
standard macros internally budly CMT , taking into account all usgzhckages.

11.3.3 - cmt checkconfiguration

This command reads the hierarchy of requirements files referenced by a package, check
them, and signals syntax errors, version conflicts or other configuration problems.

An empty output means that everythingine.

11. 3.4 - cmt check files <reference-filexxnew-file>

This command compares the reference file to the new file, and substitues the reference
file by the new one if they are different.

If substitution is performed, a copy (with additioratensiorsav) is produced.

11. 3.5 - cmt checkout...

Seetheparagraplon how to use cvs togetheithCMT , and more specifically the
detailsoncheckouprations.

11.3.6 - cmt co...

This is simply a short cut tthecmt checkoutcommand.

11.3.7 - cmt cleanup[-csh|-sh]

This command generates (to the standard output) a set of shell commands (either for
csh or sh shell families) meant to unset all environment variables specified in
therequirementdiles of the used packages.

This command is internally used in the cleanup.[c]sh shell script, itself generdtesl by
cmt config command.

49

11.3.8 - cmtconfig

This command (re-)generates the setup scripts and the manimal Makefile (when it does
not exist yet or have bedwst).

csh> cd ~/Packages/Foo/vl/cmt
csh> cmt config

To be properly operated, onaustalreadybe inthecmt or mgr branch of a package
(where therequirementgile can befound).

This command also performs some cleanup operations (eg. removing all makefile
fragments previously generated). Generally speaking, one may say that this command
restores the CMT-related files to their original state (ie before any document
generation)

The situations in which it is useful to run this commanrst

When the setup or cleanup scripts have been lost

When the minimal Makefile have been lost

When the versionf CMT is changed

After restoring a package from CVS

After having manually changed the directory structure of a package (using a
manual copy operation, or renaming one of its parent directory, such as the
versiondirectory)

11.3.9 - cmt create <package> <versionf<area>]
This command creates a new package or a new versiopackage
csh> cmt create Foo vl
or:

csh> cmt create Foo vl ~/dev

In the first mode (ie. withouheareaargument) the package will be created in the
defaultpath.

The second mode explicitly provides an alteripetih.
A minimal configuration is installed for this ngeackage:

An src andancmt branch
A very minimal requirements file
The setup and cleanup shell scripts

°
°
°
® The minimalMakefile

50

11. 3.10 - cmt filter <in-file> <out-file>

This command reads<in-file>, substitutes all occurences of macro references (taking
either the forn$(macro-name) or ${ macro-name}) by values deduced from
corresponding macro specifications foundhareguirementdiles, and writes the

result into <out-file>.

This mechanism is widely internally usegd CMT , especially for instanciating make
fragments. Then, users may use it for any kind of document, including maual
generation of MSDev configuration filestc...

11.3.11 - cmt help |--help

This command shows the list of optiongtudcmt driver.

11.3.12 - cmtlock [<package> <version> [<area>]

This command tries to set a lock onto the current package (or onto the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then install a small text filkamedock.cmt into thecmt/mgr branch of the
package, containing the following text:

locked by <user-name> date <now>

3. Run a shell command described in the maenmedock _commandmeant to
install physical locks onto all files for this version of this package. A typical
definition for this macro could be:

macro lock_command "chmod -R a-w ../*"\
WIN32 "attrib /S /D +R ../*"

11.3.13 - cmt remove <package> <versionf<area>]

This command removes one version of the specified package. If the package does not
contain a conflicting lock, and if the user is granted enough access rights to remove
files,all files below the version directory will be definitively removed. Therefore this
command should be used with as much care as possible.

The arguments needed to reach the package version to be removed are the same as the
ones whic had been used to cretate

If the removed version is the last version of this package, (and only if its directory is
really empty) the package directory itself will eleted.

51

11.3.14 - cmt removelibrary_links

This command removes symbolic links towards all imported libraries which had been
installed usinghe_cmt build library_links command. This command is generally
transparently executed when one rgnsakeclean

11.3.15 - cmt run 'shell-command’
This command runs any shell command, in the context of the current package.

In particular all environment variables defined in requirements file are first set before
running the command. This may be seen as a generic applicatiamer.

This may be combined with the global optiepack=package -version=version,
-path=access-path to give a direct access to any packegeatext.

11. 3.16 - cmt set version<version>

This command creates and/or fills in trexsion.cmtfile for a package structured
without the version directory.

This command has no effect when run in the context of a paskagturedvith the
versiondirectory

This command must be run while being in the context of one GatKage.

11.3.17 - cmt setversions

This command applies recursivehe cmt set version... command onto all used
packages using a broadcast operation.

Packages reached during the broadcast scan acquire their version from the original use
statement. This is this specified version which will be stored insidestiséon.cmt
files

11.3.18 - cmt setup[-csh|-sh|-bat]

This command generates (to the standard output) a set of shell commands (either for
csh, sh or bat shell families) meant to set all environment variables specified in
therequirementdiles of the used packages.

This command is internally used in the setup.[c]sh or setup.bat shell script, itself
generated byhe cmt config command.

52

11.3.19 - cmt show<option>

all_tags

This command displays all currently defined tags, even when not cuaetivg
applied_patterns

This command displays all patterns actually applied in the cuysesiage

author
branches
clients<package>[<version>]

This command displays all packages that expregxlicit usestatement onto
the specified package. If no version is specified on the argument list, then all uses
of that package amisplayed.

constituent_names
constituents
cycles

This command displays all cycles in the use graph of the current package.
Although CMT smoothly accepts such cycles, still it is generally a bad practice to
have cycles in a use graph, because in front of a cycle CMT can never decide on
the prefered entry point in the cycle, leading to somewhat unpredictable results, eg
in constructing the use_linkoptsacro.

uses
use_paths<target-package>

This command displays all possible paths between the current package and the
specified used targptckage.

In particular this will detect if a package has no access to another one, due to
private usestatements

fragment<name>

This command displays the actual location where the specified make fragment is
currently foundoy CMT , taking into account possible overridddafinitions.

fragments
groups

This command displays all groups possibly defined in constituents of the current
package (using th@roup=< group-name> option).

languages
macro<name>

53

This command displays a quite detailed explanation on the value assigned to the
macro specified as the additional argument. It presents in particular each
intermediate assignments made to this macro by the hierarchy of used statements,
as well as the final result of these assignnogetrations.

By addinga -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuratidefised.

L macro_value<name>

This command displays the raw value assigned to the macro specified as the
additional argument. It only presents the final result of the assignment operations
performed by usedackages.

By addinga -tag=<tag>option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuratidefised.

The typical usage dhe showmacro_valuecommand is to get at the shell level
(rather than within 8akefile) the value of a macro definition, providing means
of accessing them (quite similarly to an environment variable)

csh> set compiler=‘cmt show macro_value cppcomp’
csh> ${compiler}

® Mmacros

This command extracts frothe requirements file(s) the complete set of macro
definitions, selects thappropriatdag definition (or uses the one providedtire
-tag=<tag>option) and displays the effective macro values corresponding to this
tag.

This command is typically used to show the effective list of macros used when
running make and can be also used to build, as an argument list, the make
command as follows

csh> eval make ‘cmt show macros’

This useof cmt showmacrosis directly installed within the default target

provided in the standandakefile.headerfile. Therefore if this file is included

into thepackage'Makefile , macro definitions provided tinerequirementdiles

(the one of the currently built package as well as the ones of the used packages)
will be expanded and provided as argumentaage.

By addinga -tag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without atcually going to a
machine or an operating system where this configuratidefised.

® manager
® packages

54

This command displays all packages (and all versions of them) currently reachable
through thecurrentaccespathdefinition (which can be displayed usitige cmt
showpath command).

path

This command displays the complete afféctiveaccespathcurrently defined
using any possible alternatey.

pattern<name>

This command displays how and where the specified pattern is defined, and which
packages do apply.

patterns
This command displays all pattedefinitions.
pwd

This command displays a filtered version of stendardowd unix command. The
applied filter takes into account the set of aliases installed in the standard
configuration file located iS{CMTROOT}/mgr/cmt_mount_filter .

This configuration file contains a set of path aliases (one per line) each proposing
a translation for non-portable file paths (imposed by mount constraints on some
contexts).

set_value<name>
set<name>

sets

strategies

tags

This command displays alurrentlyactivetags, and what part of the
configuration actually activateaeem

uses

This command displays a quite comprehensive and detailed explanation of the
hierarchy of use statements, with the effective selection made between possibly
compatibleversions.

#use Cmv7rll

use CSet v2rb

use OPACS v3

use Civbr2

use CSetv2rs
#

Selection :

use CMT v1rl4 /lal
use CSet v2r5 (/lal)
use Civbr2 (/lal)
use OPACS v3 (/lal)
use Cmv7rll (/lal)

55

The-quiet option may be used to remove from the output, the comments
(beginning withthe # character), so as to display a simple list of used packages,
starting from the deepesgses.

® version
This command displays the version tag of the cuipankage.
® versions<name>

This command displays the reachable versions of the specified package, looking at
the current accegsmths.

11.3.20 - cmtsystem

This command displays the current value assigned by defahtGMTCONFIG
environmentwariable.

11.3.21 - cmtunlock [<package> <version> [<area>]

This command tries to remove a lock from the current package (or from the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then remove the text filkmmedock.cmt from thecmt/mgr branch of the
package.

3. Run a shell command described in the maenmedunlock_commandmeant to
remove physical locks from all files for this version of this package. A typical
definition for this macro could be:

macro unlock_command "chmod -R g+w ../*"\
WIN32 "attrib /S /D -R ../*"

11.3.22 - cmt version |--version

This command shows the current ver@@MT , including (if applicable) the actual
patch level. This always corresponds to the corresponding CVS tag assigitd
sources.

11.3.23 - cmt cvstags<module>

(see the sectioonhow tuuseCVS together withCMT for more details on this
command)

56

11. 3.24 - cmt cvsbranches<module>

11.3.25 - cmt cvssubpackagesmodule>

11.4 - The setup and cleanugscripts

They are produced hirecmt config command and their contents is built according to the
specifications stored in theequirements file.

One flavour of these scripts is generated per shell fgmgh, shandbat), yielding the
following scripts:

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

The main sections installed within a setup script are

1. Connection to the current versiontbe CMT package.
2. Setting the set of user defined public variables specifititeirequirementdile
(including those defined by all used packages). This is achieved by ruheitmgt
setup utility into a temporary file and running this temporary file.
3. Activation of the user defined setup and cleanup scripts (those specifiedhgsing
setup_scriptandcleanup_scriptstatements).
It should be noted that these setup scdptsot contain machine specific information (due
to the online use dhecmt setupcommand). Therefore, it is perfectly possible to use the
same setup script on various platforms (as soon as they share the directories) and this also
shows that the configuration operatipinecmt config command) is required only once for a
set of multiple platforms sharing a developmama.

11.5 - cmt build prototype

This command is only provided for developmef@ modules. It generate€ header file
containing the set of prototype statements for all public functions of a given module. Its
output is a file with the same name as the input source (given as the argument) and suffixed
with.ph .

The generated prototype header file is meant to be included whereever it is needed (in the
module file itself forinstance).

A typical example of the usa cmt build prototype could be:
csh>cd ../src

csh> cmt build prototype FooA.c
Building FooA.ph

57

Runningcmt build prototype will only produce a new prototype header file if the output is
actually different from the existing one (if it exists) in order to avoid confusiggechecks.

The effective use of this facility (which may not be appropriate in all projects) is controlled
by one option of the build strategy, which can take one of theaues:

build_strategy prototypes
build_strategy no_prototypes

In addition to this global strategy specification, each application or library may individually
override it using theprototypes or -no_prototypesoptions.

Lastly, the actual behaviour of the prototype generator is defined in the standard make
macrobuild_prototype (which default to calthe cmt build prototype command, allowing
a user defined behavious to theature)

12 - Using cvs together withCMT

Nothing special is apriori requirdry CMT with respect to the usd# CVS . Nevertheless, one
may advertize some well tested conventions and practices which turned out to ensure a good
level of consistency between the tw#ilities.

Although none of these are requirétk cmt general command provides a few utilities so as to
simplify the use of these practices. It should be noted that the added features provided by cmt rely
on the possibilityo queryCVS about the existinGMT packages and the possible tags setup for
these packages. CVS does not by default permit such query operations (since they require to scan
the physical CVS repository). Therefd#MT provides a hook to CVS (based upon standard

CVS features - not patches) for this. This hook can be installed by the following procedure (see
sections below for mor@etails):

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

12.1 - Importing a package into a cvgepository

Generally, everything composing a package (belowénsiondirectory and besiddbe

binary directories) is relevant to be imported. Then choosicgsamodulename is

generally done on the basis of the package name. Taking the previous examples, one could
importthe Foo package as follows

csh>cd/Foolvl
csh> cvs import -m "First import" -1 alpha -1 hp9000s700 Foo LAL v1

In thisexample,

® we have ignored the currently existing binary directqftesealpha andhp9000s700
e thecvsmodule name is identical to the package néfFf®o)
e the original symbolic insertion tag is identical to the version idenfjfiér)

58

The choice of the module name can generally be identical to the package name. However,
some site specific management issues may lead to different choices (typically, a top
directory where groups of packages are gathered mamgéded).

Conversely, using symbolic tags identical to version identifiers appears to be a very good
practice. The only constraint induckdcvsis that the symbolic tags may rauintaindot
characterg’.’), whereas no restriction exfsbom CMT itself. Thus version identifiers like
v3r2 will be preferred tahev3.2form.

12. 2 - Checking a package out from a cveepository

Assuming the previous conventions on module name and version identifier have been
selected when importing a package, the following operations will naturally intervene when
one need to check a package out (typically to work on it or to install it on some platform)

csh> cd <some root> 1)
csh> mkdir Foo 2
csh> cd Foo

csh> cvs checkout -d vl Foo (3)
csh> cd vl/cmt

csh> cmt config 4)
csh> source setup.csh (5)
csh> [g]make (6)

1. one always have to select a root directory where to settle down this copy of the
extracted package. This may either besivealleddefaultroot or any other
appropriate directory. In both cases, tigxtcmt config operation will automatically
take care ofthis effective location.

2. creating a base directory with the package name is mandatory heienatiken
into accounby cvsduringthe chaeckoubperation since one wants to indbeversion
branch in between.

3. the package is checked out into a directory named with the expected version identifier
exactly corresponding to the version currently stordgtiercvs repository.

4. then usinghe cmt config command (from themt branch) will update the setup scripts
againsthe_requirements file and the effective current package location.

5. using this updated version of the setup script provides the appropriate set of
environment variables

6. lastly, rebuilding the entire package is possible simply usiafg]make command.

The actions decribed just above (from number 2 to number 4 included) can also be
performed usinghe cmt checkoutcommand.

> cd <some work area>
> cmt checkout [modifier ...] <package> ...

modifier :

-l Do not process used packages (default).

-R Process used packages recursively.

-rrev Check out version tag. (is sticky)

-d dir Check out into dir instead of module name.
-0 offset Offset in the CVS repository

-n Simulation mode on

-v Verbose mode on

-help Print this help

59

Thus the previous example would become:

csh> cd <some root>
csh> cmt checkout Foo
csh> cd Foo/vl/cmt
csh> source setup.csh
csh> [glmake

12. 3 - Querying CVS about some importantinfos

It is possible, using the commands :
® cmt cvstags<module>
® cmt cvsbranches<module>
® cmt cvssubpackages<module>

to querythe CVS repository about the existing tags installed ongivan CVS module, the
subdirectories and the subpackagesH@CMT meaning, i.e. whea_requirements file
exists).

> cmt cvstags Cm

V7r6 v7r5 v7rd v7r3 virl v7
> cmt cvstags Co

v3r7 v3r6 v3

One should notice here thht cvstagscommand can give informations about any type of
module, even if it is not managedtire CMT environment.

However, in order to let this mechanism operate, it is required to install some elements into
the physicalCVS repository(which may require some access rights ihfo This

installation procedure (to be done only once in the life of the repositiory) can be achieved
through the followingcommand:

sh> (cd ${CMTROOT}mgr; gmake installcvs)

However, the details of the procedure is listed below (this section is preferably reserved for
system managers and can easily be skipped by stamskzng):

1. copythecmt_buildcvsinfos2.shshell script into the managemetitectory
${CVSROOT}CVSROOT as follows :

sh> cp ${CMTROOT}mgr/cmt_buildcvsinfos2.sh ${CVSROOT}/CVSROOT
2. install one special statementtireloginfo administrative file as follows :
sh>cd ...
sh> cvs checkout CVSROOT
sh> cd CVSROOT

sh> vi loginfo

.cmtcvsinfos $CVSROOT/CVSROOT/cmt_buildcvsinfos2.sh
sh> cvs commit -m "set up commitinfo for CMT"

60

12.4 - Working on a package, creating a newelease

This section presents the way to instanciate a new release of a given package, which
happens when the foreseen modifications will yield additions or changes to the application
programming interface of thmackage.

Then the version tag is supposed to be moved forward, either increasing its minor identifier
(in case of simple additions) or its major identifier (in casehahges).

The following actions should be undertaken then

1. understand what is the latest version tag (typically by ukiegmt cvstagscommand).
Let’s call itold-tag .

2. select (according to the foreseen amount of changes) what will be the next version tag.
Let's call itnew-tag.

3. check the most recent version of the package in your development area :

sh> cd <development area>
sh> cvs checkout -d <new-tag> <package>

4. configure this new release, and rebuild it :

sh> cd <new-tag>/cmt
sh> cmt config

sh> source setup.csh
sh> [glmake

12.5 - Getting a particular tagged version out ofCVS

The previous example presented the standard case where ot gatstrecentversion of

a given package. The procedure is only slightly modified when one wants to extract a
previously tagged version. Let's imagine ttiad Foo package has evolved by several
iterations, leading to several tagged releaséseinvs repository(sayv2 andv3). If thev2

release is to be used (e.g. for understanding and fixing a problem discovered in the running
version) one will operate as follows

csh> cd <some root>

csh> mkdir Foo

csh> cd Foo

csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt

csh> cmt config

csh> source setup.csh

csh> make

61

13 - Interfacing an external package withCMT

Very often, external packages (typically commercial products, or third party software) are to be
used by packages developped in the contettted©MT environment. Although this can

obviously done simply by specifying compiler or linker options internally to the client packages,
it can be quite powerful to interface thesecalledexternalpackageso CMT by defining aglue
package, where configuration specifications for this external packadetaiied.

Using this approach, one may

® provideanicknaméor this external package,
e adapt the version tag convention consistently to the project, hiding the version tag
specificities of eg. commercial packages.
® provide compiler options using the the standard make meapaxkage>_cflags
<package>_cppflagor <package>_ fflags,
e specify a set of search paths for the include files, ubimclude_dirs statement,
e provide linker options using the the standard make magraskage>_linkopts
Let’s consider the example tfeOPACS package. This package is provided outsidéneZMT
environment. Providing a directory tree following tBBIT conventions (ie. a branch named
after the version identifier, theancmt branch) then aequirements file, containing (among
other statements not shown for the sake of clarity) :

package OPACS

include_dirs ${Wo_root}/include ${Co_root}/include ${Xx_root}/include \
${Ho_root}/include ${Go_root}/include ${Xo_root}/include

public
macro OPACS_cflags "-DHAS_XO -DHAS_XM"
macro OPACS_cppflags " $(OPACS_cflags) "

macro OPACS_linkopts "$(Wo_linkopts) $(Xo_linkopts) $(Go_linkopts) \
$(Glo_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(Htmlo_linkopts) \
$(W3o_linkopts) $(Co_linkopts) $(X_linkopts)"

Then every package or application, client of tDRACS package would have just to provide a
use statement like

use OPACS v3

This procedure gives the complete benefit of the use relationships between packages (a client
application transparently inherits all configuration specifications) while keeping unchanged the
original referenced package, allowing to apply this approach even to commercial products so that
they may be integrated in resource usage surveys similarly topadeages.

14 - The installation areamechanism

CMT proposes and implements a flexible architecture for installation areas, meant to group the
results of the build process or any other information belonging to packages into shared disk
spaces. The typical usage of such installation areas is classical and expect to make only visible to
the clients of a given (sub-)project the results of the build process while hiding the details of the
packagesources.

62

the basics of the mechanisms supported by CMT arelibeiing:

1.

All mechanisms are customizable, so as to easily follow the project specific conventions

However CMT proposes a minimal default behaviour based on the concrete experience in
large projects, as well as frequently met practices

A typical well supported convention is to map the set of installation areas onto the set of
CMTPATH entries, associating the concept of CMTPATH splitting with the sub-project
organization

A typical consequence of this approach is that many configuration parameters need to be set
according to the list of CMTPATH items. Eg on a Unix system, if one expects to find shared
libraries in every installation area, each of them being created in a corresponding

CMTPATH entry, one also expects to have LD_LIBRARY_PATH entries accordingly. The
mechanism of cmtpath_pattern is exactly designed for that.

The mechanism easily supports the extension for installing binary files (libraries,
applications, java classes), runtime files, documentation and Hédagler

14.1 - The defaultimplementation

It is provided in termsf

1.

A set of cmtpath_patterns defined in the CMT requirements file. This can be displayed
using the command

> cmt show cmtpath_patterns

A consistent set of actions added to the following make_fragments

63

application applications
library shared libraries
library_no_share static libraries
java_header Java applications

jar Java libraries

One shell script for installing or uninstalling filesdirectories

${CMTROOT}/mgr/cmt_install_action.sh
${CMTROOT}/mgr/cmt_uninstall_action.sh
${CMTROOT}mgr/cmt_install_action.bat
${CMTROOT}mgr/cmt_uninstall_action.bat

The default architecture of this installation scheme is by default set for each
CMTPATH entryto:

<path>/InstallationArea/$(tag)/bin/... [1]
I$(tag)/liby... 2]
/include/<package>/... [3]
/share/bin/... [4]
/sharel/lib/... [5]
/... [6]
/doc/<package>/... [7]
I.. [8]
1. Platform dependent executables
2. Platform dependent libraries
3. Public header files
4. Platform independent applications (eg Java applications)
5. Platform independent libraries (eg Java libraries)
6. other platform independent files
7. package specific documentations
8. project-wide documentation

The cmtpath_patterns are designed in this implementation for constructing a proper and
consistent sequence of system specific environment variables (eg PATH,
LD_LIBRARY_PATH, CLASSPATH) as well as compiler or linker options so as to
transparently refer to the installation area only when it is appropriate to ovverride the local
patterns.

15 - Installing CMT for the first time

These sections are of interest ofilZMT is not yet installed on your site, of if you need a
privateinstallation.

64

The first question you need to answer is the location whenstall CMT . This location is
typically a disk area where most of packages managed in your project eidlabed.

Then, you have to fetch the distribution kit from the Wehbttt//www.lal.in2p3.fr/SI/CMT.

You must get at least the primary distribution kit containing the basic configuration information
andtheCMT sources. This operation results in a set of directories hanging thed@MT root

and the version directory. The src branch contains the safrGMT , the fragments branch
contains the makefile fragments and the mgr branch contains the scripts needed to build or
operateCMT .

15.1 - Installing CMT on your Unix site

The very first operation aftelfowloadingCMT consists in running the INSTALL shell
script. This will build the setup scripts requireddrsyy CMT user.

Then you may either decide bboild CMT by yourself or fetch a pre-built binary from the
same Web location. The prebuilt binary versions may not exist for the actual platform you
are working on. You will see on the distribution page the precise configurations used for
building thosebinaries.

In case you have touild CMT yourself, you need a C++ compiler capable of handling
templates (although the support for STL is not required). There is a Makefile provided in the
distribution kit which takes g++ by default as the compiler. If you need a specific C++
compiler you will override the cpp macro fadows:

sh> gmake cpp=CC
Thecppflagsmacro can also be used to override the behaviour abthgilation.

Another important concern is theay CMT will identify the platform.CMT builds a
configuration tag per each type of platform, and uses this tag for naming the directory where
all binary files will be stored. As such this tag has to be defined prior tobeMerCMT

itself.

CMT builds the default configuration by running the cmt_system.sh script found in the mgr
branchof CMT . Run it manually to see what is the default value provided by this script.
You might consider changing its algorithm for your ovemvenience.

A distribution kit may be obtained at the following URL

http://www.cmtsite.org
Oncethetar file has been downloaded, the following operations must be achieved

1. Select a root directory where to inst@MT . Typically this will correspond to a
development area or a public distribution area.

Import the distribution kit mentioned above.

Uncompress and untar it.

ConfigureCMT .

CMT is ready to be used for developing packages.

arwn

65

http://www.lal.in2p3.fr/SI/CMT

A typical corresponding session could look like

csh> cd /Packages

csh> <get the tar file from the Web>
csh> uncompress CMTv1rl4.tar.Z
csh> tar xvf CMTv1rl4.tar

csh> cd CMT/virld/mgr

csh> /INSTALL

csh> source setup.csh

csh> gmake

15.2 - Installing CMT on a Windows or Windows NT site

You first have to fetch the distribution kit from the Welhtip://www.cmtsite.org You

must get at least the primary distribution kit containing the basic configuration information
andthe CMT sources. This operation results in a set of directories hanging thed@MT

root and the version directory. The binary kit provided for Windows environments will
generally fit youmeeds.

You should consider getting the pre-compiled (for a Windows environment) applications,
and especially the\VisualCl\install.exeapplication, which interactively configures the
registry entries as described in the neattagraph.

The next operation consists in defining a few registries (typically using the standard RegEdit
facility or theinstall.exe specialapplication):

e HKEY_ LOCAL_ MACHINE/Software/CMT/root will contain the root directowhere
CMT s installed (eg. "e:").

e HKEY_LOCAL_MACHINE/Software/CMT/version will contain the current version
tagof CMT ("v1r14" for this version).

e HKEY_LOCAL_MACHINE/Software/CMT/path/ may optionally contain a set of text
values corresponding to the different package global access paths.

e HKEY_LOCAL_MACHINE/Software/CMT/site will contain the conventional site
name.

e HKEY_ CURRENT_USER/Software/CMT/path/ may contain a set of text of text
values corresponding to the different package private apedss.

CMT can also be configured to run on DOS-based environmentstbsingake facility.
In this case, the installation procedure is very similar to the Giméx

A typical corresponding session could look like :

dos> cd Packages

dos> <get the tar file from the Web>
dos> cd CMT\v1r14\mgr

dos> call INSTALL

dos> call setup.bat

dos> nmake /f nmake

66

http://www.cmtsite.org/

16 - Differences with previousversions

17 - Appendices

17.1 - Copyright
Copyright (c) 1996 LAL Orsay, UPS-IN2P3-CNRS (France).

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
® Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
® Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
® All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developedhuy
Computer Application Development Group at LAlrsay
(Laboratoire de I'Accelerateur Linaire - UPS-IN2P3-CNRS).

® Neither the name of the Institute nor of the Laboratory may be used to endorse or
promote products derived from this software without specific prior written permission.

This software is provided by the LAL and contributors “as is” and any express or
implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed. In no event shall
the LAL or contributors be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability, or
tort (including negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of suattamage.

17. 2 - Standard make targets predefined irCMT

These targets can always be listed through the following command

sh> gmake help

67

target

usage

help Get the list of possible make target for this package.

all build all components of this package.

clean remove everything that can be rebuilt by make

configclean remove all intermediate makefile fragments

install install binaries of this package to thecurrent installation area
uninstall uninstall binaries of this package from the current installation area
check run all applications defined with the -check option

component-nam

only build this particular component (as opposethéall target that tries tq
Fouild all components of this package)

group-name

build all constituents belonging to this group (ie. those defined using th
same -group=<group-name=>option)

D

These targets have to be specified as follows

sh> gmake clean
sh> gmake Foo

17.3 - Standard macros predefined inCMT

17.3.1 - Structural macros

These macros

describe the structural conventions follow&My . They receive a

conventional default value frotheCMT requirements file. However, they can be
overridden in any package for its own needs.

68

macro usage defaultvalue
CMTrelease gives the current release numbeCOT 14
CMTVERSION gg:i\'\//IeTs the current complete version tag of vir14p20030616
tag gives the binaryag ${CMTCONFIG}
src the srcbranch .Isrcl
inc the includebranch ..Isrcl
mgr the cmt or mgbranch .Jcmt/or ../mgr/
bin the branch fobinaries ..I$(<package>_tag)
javabin the branch for javalasses ..Iclasses/
doc the docbranch ..Idoc/
cmt_hardware the description of the currehirdware <none>
cmt_system_version | the version of the curre@S <none>
cmt_compiler_version the vgrsion of the currently visible C++ <none>

compiler

17.3.2 - Language relatedmacros

These macros are purely conventional. They are expected in the various make
fragments availabldEomCMT itself for providing the various building actions.

During the mechanism of new language declaration and definition availdahke in
CMT syntax, developers are expected to define similar conventions for corresponding
actions.

Their default values are originally defined instderequirementdile of theCMT
package itself but cameredefinedby providing a new definition in the package’s
requirements file usinthe macro statement. The original definition chercompleted
usingthemacro_appendor macro_prependstatements.

cc The Ccompiler cc

ccomp | The C compilingcommand | $(cc) -c -I$(inc) $(includes(cflags)

clink The C linkingcommand (cc)(clinkflags)

cflags The C compilatiorilags none

pp_cflags| The preprocessor flags f@r| none

clinkflags | The C linkflags none

69

cpp The C++compiler g++

cppcomp | The C++ compilingcommand | $(cpp) -c -1$(inc) $(includes)b(cppflags)

cpplink The C++ linkihngcommand $(cpp) $(cpplinkflags)

cppflags The C++ compilatiorilags none

pp_cppflags| The preprocessor flags f@++ | none

cpplinkflags | The C++ linkflags none

for The Fortrarcompiler 77

fcomp The Fortran compilingommand $(for) -c -I1$(inc) $(includes)$(fflags)

flink The Fortran linkinggommand $(for) $(clinkflags)
fflags The Fortran compilatioflags none
pp_fflags | The preprocessor flags ftortran none
flinkflags | The Fortran linklags none

ppcmd | The include file command fdfortran| -

javacomp | The java compilingommand javac

jar The java archivecommand | jar
lex The Lexcommand | lex $(lexflags)
lexflags | The Lexflags none
yacc The Yacccommand | yacc$(yaccflags)
yaccflags| The Yacdflags none
ar The archivecommand ar -clr
ranlib The ranlibcommand | r anlib
17.3.3 - Package customizingnacros

These macros do not receive default values. They are all prefixed by the package name.
They are meant to provide specific variant to the corresponding generic language
related macros.

They are automatically and by default concatenatedMy to fill in the
correspondingjlobalusemacros (see appendix generatednacros). However, this
concatenation mechanism is discarded whenrno_auto_importsoption is specified
in the corresponding ustatement.

70

The<package>_native_version is not subject to autoroaticatenation.

PSS
Dort

will

> native_version

i pce]}g;sge specific C flags

i p;;k;?:gs specific C preprocessor flags

i pci)cr;?sges specific C++ flags

i ps:kggpi‘lags specific C++ preprocessor flags

i pf:;l;zge specific Fortran flags

i ps;k%gzs specific Fortran preprocessor flags

< package gives the (space separated) list of library names exported by this

S plibrari?es package. This list is typically used in tbat build library_links

- command.

provide the linker options required by any application willing to acce
the different libraries offered by the package. This may include sup

< package for several libraries per package.

> linkopts _]
A typical example of how to define such a macro could be
macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -ICm -Im"
may contain a lisbf stampfile names (or make targets). Whenever a
library is modified, one dedicated stamp file is re-created, simply to
mark the reconstruction date. The name of this stamp file is
conventionally< library >.stamp. Thus, a typical definition for this
macro could be :

i p:;:;qagse macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp”
Then, these stamp file references are accumulated into the standa
macronameduse_stampswhich is always installed within the
dependency list for applications, so that whenever one of the librari
used from the hierarchy of used packages changes, the application
be automaticallyebuilt.
specifies the native version of the external package referendaisby

< package interfacepackage.

When this macro is provided, its value is displayethi®cmt show
usescommand

< package
> export_paths

specifies the list of files or directories that should be exported durin

deployment process for this package. Generally this is only useful for

g the

glue packages refering to external software

71

< package specifies the base location for external software described in glue
> home packages. This macro is generally used to specify the previous one

17.3.4 - Constituent specific customizingnacros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each constituent, specific variants to the corresponding generic
language related macros.

By convention, they are all prefixed by the constituent name. But macros used for
defining compiler options are in addition prefixed by the constituent catégjtmgr
lib_,app_ordoc_

They are used in the various make fragments for fine customization of the build
commandoarameters.

72

< category>_<
constituent
> cflags

specific C flags

< category> <
constituent
> pp_cflags

specific C preprocessor flags

< category>_ <
constituent
> cppflags

specific C++ flags

< category>_<
constituent

> pp_cppflags

specific C++ preprocessor flags

< category> <
constituent
> fflags

specific Fortran flags

< category>_<
constituent
> pp_fflags

specific Fortran preprocessor flags

< constituent
>linkopts

provides additional linker options to the application. It is
complementary to - and should not be confused with < {heckage

> linkopts macro, which provides exported linker options required
clients packages to use the package libraries.

by

< constituent
> shlibflags

provides additional linker options used when building a shared lib
Generally, a simple shared library does not need any external ref
to be resolved at build time (it is in this case supposed to get its

unresolved references from other shared libraries). However, (typ
when one builds a dynamic loading capable component) it might
desired to statically link it with other libraries (making them some\
private).

rary.
brence

ically
be
vhat

< constituent
> dependencies

provides user defined dependency specifications for each constityient.

The typical use of this macro is fill it with the name of the list of so
other constituent&hich haveto be rebuilt first (since each constitug
is associated with a target with the same name). This is especially
needed when one want to use the parallel gmake (ie. the -j option
gmake).

me
nt

of

17.3.5 - Source specific customizingnacros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each source file, specific variants to the corresponding generic
language related macros.

73

By convention, they are all prefixed by the source file name followed by the source file
suffix (either_c, cxx, f,etc.)

They are used in the various make fragments for fine customization of the build

commancparameters.

< constituent>_<suffix > cflags | specific C flags

< constituent>_< suffix >_cppflags| specific C++ flags

< constituent>_<suffix >_fflags specific Fortran flag

v

17.3.6 - Generatedmacros

These macros astomaticallygeneratedvhenmake is run.

The first set of them provide constant values correspondi@yIT based information.

They are not meant to be overridden by the user, since they serve as a communication

mean betwee@MT and theuser.

< PACKAGE
>ROOT

The access path of the package (including the version branch)

< package>_root

The access path of the package (including the version branch).
macro is very similar tthe< PACKAGE>ROOT macro except
that it tries to use a relative path instead of an absolute one.

< PACKAGE
>VERSION

The used version of the package

PACKAGE_ROOT

The access path of the current package (including the version
branch)

package

The name of the current package

version

The version tag of the current package

package_offset

The directory offset of the current package

cmtpath

The package area where the current package has been found

The second set is deduced from the context and from the requirements file of the
package. They can be overridden by the user so as to custbe@dT behaviour.

< package>_tag

The specific configuration tag for the package. By default it is s
$(tag) but can be freely overridden

constituents

This

et to

The ordered set of constituents declared without any group optjon

<group-name>
_constituents

The ordered set of all constituents declared using a
group=<group-name>option

74

The third set of generated macros thweglobal usemacros. They correspond to the
concatenation of the corresponding package specific customizing options that can be
deduced from the ordered sétusestatements found in the requirements file (taking
into account the complete hierarchy of used packages with the exception of those

specified withthe

-no_auto_importsoption in their use statement)

use_cflags

C compiler flags

use_pp_cflags

Preprocessor flags for the C language

use_cppflags

C++ compiler flags

use_pp_cppflags

Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use pp_fflags Preprocessor flags for the Fortran language
use_libraries List of library names

use_linkopts Linker options

use_stamps Dependency stamps

use_requirements

The set of used requirements

use_includes

The set of include search paths options for the preprocessor from the

used packages

use_fincludes

The set of include search paths options for the fortran preprocesso
the used packages

r from

includes The overall set of include search paths for the preprocessor
, The overall set of include search paths options for the fortran
fincludes
preprocessor
17.3.7 - Utility macros

These macros are used to specify the behaviour of various actions in CMT.

75

X11 cflags

compilation flags for X11

one

Xm_cflags compilation flags for Motif

X_linkopts Link options for XWindows (and Motif)

make_shlib The command used to generate the shared library from the statio
shlibsuffix The system dependent suffix for shared libraries

shlibbuilder The loader used to build the shared library

shlibflags The additional options given to the shared library builder

symlink The command used to install a symbolic link

The command used to remove a symbolic link

build_prototype

The command usedto generate the C prototype header file (defa
the internal cmt dedicated command)

[t to

build_dependencies

The command used to generate dependencies (default to the inte
cmt dedicated command)

brnal

lock_command

The command used to physically lock a package

unlock_command

The command used to physically unlock a package

make_hosts

The list of remote host names which exactly reqthieanake
command

gmake_hosts

The list of remote host names which exactly reqiiesgmake
command

17. 4 - Standard templates for makefilefragments

templatename usage used infragment

ADDINCLUDE

additional
includepath

< language>java

CONSTITUENT

name of the
constituent

< language>java jar make_header jar_header java_head
library_header application_header protos_header
library_no_share library application dependencies
cleanup_header cleanup_library cleanup_application
check_application document_header<document>trailer
dsw_all_project_dependency dsw_project
dsp_library_header dsp_shared_library_header
dsp_windows_header dsp_application_header dsp_trailg
constituent check_application_header

=

DATE now

make_header

76

file name

FILENAME without buildproto<language>< document
path
FILEPATH file path buildproto<language>< document
file suffix
FILESUFFIX (without < language>
dot)
file suffix
FILESUFFIX (with dot) < document
complete
FULLNAME file path < language>cleanup<document-dsp_contents
andname
GROUP groupname | constituents_header
LINE sourcefiles | < language>dependencies constituent
LINKMACRO link macro | application
file name
without : .
NAME path and buildproto<language>java<document
suffix
OBJS objectfiles Jar_hea(_jer Java_heaQer jar library_no_share Ilprary
application cleanup_javadocument_header trailer
OUTPUTNAME | Outputfile .. o
name
<language>dsw_header dsw_all project
current dsw_all_project_trailer dsw_trailer dsp_all
PACKAGE package _al_project_ - P_
make_setup_header make_setup readme_header readn
name :
readme_use readme_trailer
current
PACKAGEPATH | package readme_use
location
PROTOSTAMPS| PrOOWPe |05 header
stampfiles
PROTOTARGET prototype library_header application_header
targetname
SUFFIX document | _ 4o cument
suffix
title for
TITLE make make_header

header

77

e

USER username | make_header
current

VERSION package readme_header readme readme_use
versiontag

17.5 - Makefile generationsequences

This section describes the various makefile generation sequences plyddéd .
Each sequence description shows the precisemeakefragmentsused during the

operation.

Generatednakefile

description

used maké&agments

setup.make

Configuration files
for make

. make_setup_header
. make_setup

constituents.make

the main entry point
point for all
constituentargets

. constituents_header
. constituent
. check_application_header

< constituent
> make

application or library
specific make
fragment

N w N P N

© 00 ~NO O~ W

. make_header
. java_header | jar_header | library_header

application_header

. protos_header

. buildproto

. jar | library | library_no_share | application
. dependencies

. <language>|<language>_library | java

. cleanup_header

. cleanup

10.
11.
12.
13.
14.

cleanup_application
cleanup_objects
cleanup_java
cleanup_library
check_application

< constituent
> make

document specific
makefragment

OOl WN P

. make_header

. document_header
. dependencies

. <document>

. <document-trailer>
. cleanup_header

78

dsw_header
dsw_all_project_header
dsw_all_project_dependency
dsw_all_project_trailer
dsw_project

dsw_trailer

dsp_all

Visual workspace

<package>.dsw configurationfiles

Pl NGO A~WLDNRE

dsp_library _header |
dsp_shared_library _header |
Visual project dsp_windows_header |
configurationfiles dsp_application_header
dsp_contents

dsp_trailer

<constituent>.dsp

readme_header
readme
readme_use
readme_trailer

README

PONMPE WD

17. 6 - The complete requirementsyntax

The syntax of specification statements that can be installddnirementsfile are :

cmt-statement : application

| apply_ pattern
| apply_tag

| author

| branches

| build_strateqy
| cleanup_script

| cmtpath_pattern

| document

| Ignore_pattern
| include_dirs

| include_path

| language

| library

| make_fragment

79

| manager

| package

| pattern

| private

| public

| setup_script

| setup_strategy
| symbol

| tag

| tag_exclude
| use

| version

| version_strategy

alias . aliasalias-nameadefault-valud tag-exprvalue ...]

application . applicationapplication-namg constituent-option... |

[source ...]

constituent-option . -0S9

| -windows

| -no_share

| -no_static

| -prototypes

| -no_prototypes

| -check

| -group=group-name

| -suffix=output-suffix

| -import=package-name

| variable-name= variable-value
source . [-s=new-search-path file-name

apply_pattern . apply_patterrpattern-namg template-name value ... |

80

apply_tag
author
branches
build_strategy

build-strategy-name

cleanup_script

cmtpath_pattern

document

ignore_pattern
include_dirs
include_path
language

language-option

library

macro

macro_append

apply_tagtag-nam¢g tag-name...]
authorauthor-name
branchedranch-name...
build_strategybuild-strategy-name
prototypes
no_prototypes
keep_makefiles
rebuild_makefiles
with_install_area
without_install_area
cleanup_scripscript-name
cmtpath_patteremt-statement

[; cmt-statement..]

documentdocument-namg constituent-option... |

[source ...]
ignore_pattermpattern-name
include_dirssearch-path
include_patlsearch-path

languagdanguage-namé language-option...]

-suffix=suffix

-linker=linker-command

-prototypes
-preprocessor_commanpreprocessor_command
-fragmentfragment

-output_suffix=output-suffix
-extra_output_suffixextra-output-suffix

library library-name[constituent-option...]

[source...]
macromacro-namg tag-exprvalue ...]

macro_appenchacro-namdg tag-exprvalue ... |

81

macro_prepend
macro_remove
macro_remove_all
make_fragment

fragment-option

manager
package

path
path_append
path_prepend
path_remove

pattern

private
public

set
set_append
set_prepend
set_remove
setup_script

setup_strategy

setup-strategy-name

macro_prepenthacro-namg tag-exprvalue ... |

macro_removenacro-namdg tag-exprvalue ...]

macro_remove_alhacro-namg tag-exprvalue ...]

make_fragmenfragment-nam¢ fragment-option...]

-suffix=suffix

-dependencies

-headerfragment

-trailer=fragment

managemanager-name

packageackage-name

pathpath-namq tag-exprvalue ...]

path_appengath-namd tag-exprvalue ... |

path_prepeng@ath-nam¢q tag-exprvalue ...]

path_removeath-namq tag-exprvalue ...]

pattern[-global] pattern-name&mt-statement
[; cmt-statement..]

private

public

setset-namd tag-exprvalue ...]

set_appendet-namd tag-exprvalue ...]

set_prependet-namg tag-exprvalue ... |

set_removeet-namd tag-exprvalue ...]

setup_scripscript-name

setup_strateggetup-strategy-name

config

no_config

root

no_root

cleanup

no_cleanup

82

symbol . alias

| macro_append
| macro_prepend

| macro_remove

| macro_remove_all

| path
| path_append
| path_prepend

| path_remove
| set

| set_append
| set_prepend

| set_remove
tag . tagtag-nam€g tag-name...]
tag_exclude . tag_excludegag-namd tag-name...]
tag-expr . tag-namg & tag-name...]
use . usepackage-namé version-tag[access-path]]

[use-option]

version . versionversion-tag
version-tag . keyversion-number

[keyrelease-numbefr keypatch-number]]
use-option . -no_auto_imports

| -auto_imports

key © letter ...
version_strategy . version_strategyersion-strategy-name
version-strategy-name : best_fit

| best_fit_no_check
| first_choice

| last_choice

83

| keep_all

17. 7 - The internal mechanism of cmt cv®perations

Generally, CVS does not handle queries upon the repository (such as knowing all installed
modules, all tags of the modules etc..). Various tools such as CVSWeb, LXR etc. provide
very powerful answers to this question, but all through a Web browser.

CMT provides a hook that can be installed within a CVS repository, based on a helper script
that will be activated upon a particular CVS command, and that is able to perform some
level of scan within this repository and return filtenebrmation.

More precisely, this helper script (found${CMTROOT}/mgr/cmt_buildcvsinfos2.sh)

is meant to be declared withimeloginfo management file (see tk/S manualfor more
details) as one entry namamntcvsinfos, able to launch the helper script. This installation
can be operated at once using the follovaaguence:

sh> cd ${CMTROOT}mgr
sh> gmake installcvs

This mechanism is thus fully compatible with standard remote accessreptsitory.

Once the helper script is installed, the mechanism operates as follows (this actually
describes the algorithms installedtfire Cvsimplementation::show_cvs_infosmethod
available incmt_cvs.cxxand is transparently run when one usesthecvsxxx
commands):

1. Find a location for working with temporary files. This is generally deducedttiem
${TMPDIR} environment variable on /tmp (or in the current directory if none of
these methods apply).

2. There, install a directory hamedhtcvs/<unique-name>/.cmtcvsinfos

3. Then, from this directory, try to run a fake import command built as follows:

cvs -Q import -m cmt .cmtcvsinfos/< package-name > CMT v1

Obviously this command is fake, since no file exist in the temporary directory we have
just createdHowever,

4. This action actually triggers tloent_buildcvsinfos2.shscript, which simply receives
in its argument the module name onto which we need information. This information is
obtained by scanning the files into the repository, and an answer is built with the
following syntax:

[error= error-text] Q)
tags= tag ... (2)
branches= branch ... 3)
subpackages= sub-package ... (4)

1. In case of error (typically when the requested module is not found in the
repository) a text explaining the error condition is returned

2. The list of tags found on the requirements file

3. The list of branches defined in this packages (ie subdirectories not containing a

84

http://www.cvshome.org/docs/manual/index.html

requirements file)
4. The list of subpackages (ie subdirectories containing a requirements files)

Contents

Presentation

Theconventions

The architecture of thenvironment

1 Supportedlatforms

Installing a newpackage

Localizing apackage

Managing site dependent features - The CMTSITE environwagistble

Configuring apackage

Selecting a specificonfiguration

1 Describing aconfiguration

2 Defining the usetags

3 Activating tags

Working on apackage

Working on dibrary

Working on ampplication

Working on a test or extern lication

© © © © © W MW o o N O U ~A W W N P

A W ON P

Construction of a globanvironment

Iy
o

Defining a documemenerator

=
©
=

An example : the tedocument-style

=
o
N

How to create and install a new documsiyte

=
o
w

Examples
The tools provided b€MT

=
o

[EnY
=
=

The requirementfle

=
=
=
=

The general requiremerggntax

=
=
N

The concepts handled in the requiremditegs

[EnY
=
N
=

The package structuring style

85

11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.

NN N DN NN
©o N o o o~ w N

N
[EEN
o ©

2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

© © N o O h W N B R

=
o

Meta-information : authomanager

packageyersion

Constituents : application, librargocument

Groups
Languages
Symbols

se

patterns

cmtpath_patterns

branches

Strategyspecifications

setup_scriptcleanup_script

include_path
include_dirs
make_fragment
public, private
tag

The general cmt usarterface

cmtbroadcast

Specifying the shetommand

Templates in the shetbmmand

cmt build<option>

cmt checkconfiguration

cmt check files <reference-filesnew-file>

cmt checkout..
cmt co...

cmt cleanug-csh|-sh]

cmt config

cmt create <package> <versioRsarea>|

cmit filter <in-file> <out-file>

86

11
11
11
11
11
11
11
11
11

11.
11.
11.
11.
11.
11.
11.
11.

12

12.
12.
12.
12.
12.

13
14

14.

15

15.
15.

16

.3.11
.3.12
.3.13
.3.14
.3.15
.3.16
. 3.17
.3.18
.3.19
3.20
3.21
3.22
3.23
3.24
3.25

g A W N

cmt help F-help

cmt lock [<package> <version> [<ared>]

cmt remove <package> <versiofxarea>]

cmt removdibrary links

cmt run’shell-command’

cmt set versiogversion>

cmt setversions

cmt setud-csh|-sh|-bat]

cmt show<option>

cmtsystem

cmt unlock [<package> <version> [<ared>]

cmt version }-version

cmt cvstagsmodule>

cmt cvsbranchesmodule>

cmt cvssubpackagesnodule>

The setup and cleanggripts

cmt buildprototype

Using cvs together wittMT

Importing a package into a ckepository

Checking a package out from a ecepository

Querying CVS about some importanfos

Working on a package, creating a nehease

Getting a particular tagged version ouG)S

Interfacing an external package WA&EIMT

The installation aremechanism

The defaulimplementation

Installing CMT for the firstime

Installing CMT on your Unisite

Installing CMT on a Windows or Windows Nsite

Differences with previougersions

87

17 Appendices

17.1 Copyright

17.2 Standard make targets predefinedMT
17.3 Standard macros predefined@MT
17.3.1 Structuralmacros

17.3.2 Language relateshacros

17.3.3 Package customizinmacros

17.3.4 Constituent specific customizimgacros
17.3.5 Source specific customizingacros
17.3.6 Generatednacros

17.3.7 Utility macros

17.4 Standard templates for makefflagments
17.5 Makefile generatiosequences

17. 6 The complete requiremenggntax

17.7 The internal mechanism of cmt coperations
Images

1 Structuring a package - A typicakample.

2 Structuring a sofwarbase.

3 The architecture of documeg¢neration.

Christian Arnault

88

	CMT Configuration Management Tool
	Version v1r14 Christian Arnault arnault@lal.in2p3.fr
	General index
	€1 - Presentation
	€2 - The conventions
	€3 - The architecture of the environment
	€3.€1 - Supported platforms

	€4 - Installing a new package
	€5 - Localizing a package
	€6 - Managing site dependent features - The CMTSITE environment variable
	€7 - Configuring a package
	€8 - Selecting a specific configuration
	€8.€1 - Describing a configuration
	€8.€2 - Defining the user tags
	€8.€3 - Activating tags

	€9 - Working on a package
	€9.€1 - Working on a library
	€9.€2 - Working on an application
	€9.€3 - Working on a test or external application
	€9.€4 - Construction of a global environment

	10 - Defining a document generator
	10.€1 - An example : the tex document-style
	10.€2 - How to create and install a new document style
	10.€3 - Examples

	11 - The tools provided by CMT
	11.€1 - The requirements file
	11.€1.€1 - The general requirements syntax

	11.€2 - The concepts handled in the requirements file
	11.€2.€1 - The package structuring style
	11.€2.€2 - Meta-information : author, manager
	11.€2.€3 - package, version
	11.€2.€4 - Constituents : application, library, document
	11.€2.€5 - Groups
	11.€2.€6 - Languages
	11.€2.€7 - Symbols
	11.€2.€8 - use
	11.€2.€9 - patterns
	11.€2.10 - cmtpath_patterns
	11.€2.11 - branches
	11.€2.12 - Strategy specifications
	11.€2.13 - setup_script, cleanup_script
	11.€2.14 - include_path
	11.€2.15 - include_dirs
	11.€2.16 - make_fragment
	11.€2.17 - public, private
	11.€2.18 - tag

	11.€3 - The general cmt user interface
	11.€3.€1 - cmt broadcast
	11.€3.€1.€1 - Specifying the shell command
	11.€3.€1.€2 - Templates in the shell command

	11.€3.€2 - cmt build <option>
	11.€3.€3 - cmt check configuration
	11.€3.€4 - cmt check files <reference-file> <new-file>
	11.€3.€5 - cmt checkout ...
	11.€3.€6 - cmt co ...
	11.€3.€7 - cmt cleanup [-csh|-sh]
	11.€3.€8 - cmt config
	11.€3.€9 - cmt create <package> <version> [<area>]
	11.€3.10 - cmt filter <in-file> <out-file>
	11.€3.11 - cmt help | --help
	11.€3.12 - cmt lock [<package> <version> [<area>]]
	11.€3.13 - cmt remove <package> <version> [<area>]
	11.€3.14 - cmt remove library_links
	11.€3.15 - cmt run 'shell-command'
	11.€3.16 - cmt set version <version>
	11.€3.17 - cmt set versions
	11.€3.18 - cmt setup [-csh|-sh|-bat]
	11.€3.19 - cmt show <option>
	11.€3.20 - cmt system
	11.€3.21 - cmt unlock [<package> <version> [<area>]]
	11.€3.22 - cmt version | --version
	11.€3.23 - cmt cvstags <module>
	11.€3.24 - cmt cvsbranches <module>
	11.€3.25 - cmt cvssubpackages <module>

	11.€4 - The setup and cleanup scripts
	11.€5 - cmt build prototype

	12 - Using cvs together with CMT
	12.€1 - Importing a package into a cvs repository
	12.€2 - Checking a package out from a cvs repository
	12.€3 - Querying CVS about some important infos
	12.€4 - Working on a package, creating a new release
	12.€5 - Getting a particular tagged version out of CVS

	13 - Interfacing an external package with CMT
	14 - The installation area mechanism
	14.€1 - The default implementation

	15 - Installing CMT for the first time
	15.€1 - Installing CMT on your Unix site
	15.€2 - Installing CMT on a Windows or Windows NT site

	16 - Differences with previous versions
	17 - Appendices
	17.€1 - Copyright
	17.€2 - Standard make targets predefined in CMT
	17.€3 - Standard macros predefined in CMT
	17.€3.€1 - Structural macros
	17.€3.€2 - Language related macros
	17.€3.€3 - Package customizing macros
	17.€3.€4 - Constituent specific customizing macros
	17.€3.€5 - Source specific customizing macros
	17.€3.€6 - Generated macros
	17.€3.€7 - Utility macros

	17.€4 - Standard templates for makefile fragments
	17.€5 - Makefile generation sequences
	17.€6 - The complete requirements syntax
	17.€7 - The internal mechanism of cmt cvs operations

	Contents

