CMT
Configuration ManagementTool

Versionvlrl?2
Christian Arnault

arnault@lal.in2p3.fr

Contents

»powbdpP

© oo No O

10.

11.

12.

Copyright.
Presentation.

Theconventions.
The architecture of thenvironment.
1. Supportedlatforms
Installing a newpackage.
Localizing a package - TReMTPATH environmeniariable.
Managing site dependent features - OMTSITE environmentariable.
Configuring apackage.
Selecting a specificonfiguration.
1. Describing aconfiguration.
2. Defining the usetags.
3. Activatingtags.
Working on apackage.
1. Working on dibrary.
2. Working on arapplication
3. Working on a test or externapplication
4. Construction of a globanvironment
Defining a documengenerator.
1. An example : théex document-style
2. How to create and install a new documstyte
3. Examples
The tools provided b€MT
1. Therequirementsfile
1. The general requiremerggntax
2. The complete requiremenggntax
2. The concepts handled in the requiremditds
1. Meta-information : authomanager
2. packagevyersion
3. Constituents : application, librarggocument

4. Groups
5. Languages

6. Symboils : alias, set, set_append, set_prepend, set_remove, macro, macro_append,
macro_prepend, macro_remove, macro_remove_all, path, path_append,
path_prependoath_remove

use

pattern, apply_patterignore_pattern

branches

10. build_strategyversion_strategy

11. setup_scriptcleanup_script

12. include_path

13. include_dirs

14. make_fragment

15. public, private
16. tag

3. The generatmt userinterface
1. cmt broadcast [-select=list] [-exclude=list] [-local] [-depth=n] [-all_packages]
<shellcommand>
cmt build <option>
cmt check_configuration
cmt check_files <reference-filex<new-file>
cmt checkout...
cmt co...
cmt cleanup[-csh|-sh]
cmt config
cmt create <package> <version}<area>]
cmt filter <in-file> <out-file>
. cmt help
cmt lock [<package> <version> [<area>]
. cmt remove <package> <versionj<area>]
. cmt removelibrary_links
. cmt run shell-command
. cmt setup[-csh]|-sh]
. cmt show<option>
. cmt system
. cmt unlock [<package> <version> [<area>]
. cmt version
. cmt cvstags<module>
. cmt cvsbranches<module>
23. cmt cvssubpackagesmodule>

4. The setup and cleanggripts

5. cmt build prototype
13. Usingcvstogether withCMT

1. Importing a package into@/srepository

2. Checking a package out frontesrepository

3. QueryingCVS about some importaintfos

4. Working on a package, creating a nelease

5. Getting a particular tagged version oute$
14. Interfacing an external package WEMT

© © N

©oNoOO~WDN

=
©

B
N

=
w

[EY
SN

=
ol

=
(o2}

=
\l

B
©

NN
= O

N
N

15. InstallingCMT for the firsttime

1. Installing CMT on your Unixite

2. Installing CMT on a Windows or Windows Nsite
16. Differences with previous versions GMT

1. Converting a package that was managed with previous versions of CMiE{fonds)

2. Operations in a Windowsnvironment
17. Appendices

1. Standard make targets predefine€MT

2. Standard macros predefined@mvT

1. Structuralmacros
Language relatemhacros
Package customizinmacros
Constituent specific customizingacros
Source specific customizingacros
Generatednacros
7. Utility macros

3. Standard templates for makefffagments
4. Makefile generatiosequences
5. The complete requiremerggntax
6. The internal mechanism of cmt ceperations

ook wN

1 - Copyright.
Copyright (c) 1996 LAL Orsay, UPS-IN2P3-CNRSance).

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

® All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the
Computer Application Development Group at LAL Orsay
(Laboratoire de I'Accelerateur Linaire - UPS-IN2P3-CNRS).

Neither the name of the Institute nor of the Laboratory may be used to endorse or promote
products derived from this software without specific prior written permission.

This software is provided by the LAL and contributors “as is” and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and fithess

for a particular purpose are disclaimed. In no event shall the LAL or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business

interruption) however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of this software,
even if advised of the possibility of sucdamage.

2 - Presentation.

This environment, based on some management conventions and comprising several shell-based
utilities, is an attempt to formalize software production and especially configuration management
around gpackageorientedprinciple.

The notion ofpackagesepresents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for prodagstgreor a
framework In such an environment, several persons are assumed to participate in the
development and the components themselves are either independent or relatedtteeeach

The environment provides conventions (f@mingpackages, files, directories and for
addressinghem) and tools foautomatingas much as possible the implementation of these
conventions. It permits thaescriptionof the configuration requirements and automatically

deduce from the description the effective set of configuration parameters needed to operate the
packages (typically fapuilding them orusingthem).

CMT lays upon some organisational or managerial principles or mechanisms described below.
However, it permits in many respects the users or the managensttol, specialize and

customize these mechanisms, through parameterization, strategy control and generic
specifications.

® Many such packages are produced and maintained.

® The packages may or not be related to each other (definiingca acyclicgraph of
packages - not just a single tree).

e Eachexecutablapplication(from now on simply nhameapplicationg either belongs to a
particular package and/or defines its own environment and then makes use of some other
packages.

® Each package can be uniquely identified within the system or the frameworiabyea
which is usually a shorhnemoniand which may be also used for isolating its name-space
(eg. byprefixingcomponents of the package by its mnemonic).

® A package installed in this environment mayezportedto a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved
through the transport, the reconstruction procedure will be preserved. Configuration
specifications can be easily provided to cope with machine, site or system specific features.

® Packages are maintained consistently to their declared relationships to each other through a
versionidentification model based on :

O aversion is defined with a mnemonic comprising at least two numbers foajbeid
and theminorid,

O versions with different major ids are said to be incompatible,

O versions with same major ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.

® Version control and management schemes (eg. by @318) are usually consistently
operated, applying the conventions on organization and version identification.

® An application that uses one or several packages managed in this environment should not

itself be constrained to be manageddMT . The tools should only require a few exported
features (such as a few environment variables) for referencing any given package.

e similarly, a package maintained in this environment must be able to use packages that are
not managed in this environment (which are often cadldgeérnalpackages).

Following these definitions, the basic configuration management operations involved here (and
serviced by th€MT ' tools) consist of :
® installing the packages in conventional locations so that they can be referenced by each
other, following projects or teams structuring paradigms,
e describing the configuratiaequirementdor each package:
O dependencies to other packages,
O symbols to be exported to client packages (environment variables, make macros, etc...)
O components (also namednstituentsof the packages (libraries, applications,
documents)
O Make macros
O Strategies tha€MT should follow at run time, overriding its default ones.
O Generic behavioural patterns meant to describe generic configuration items.
® deducing the effective configuration parameters fronrélgeirementso as to automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible alternate versions of available packages).

3 - The conventions.

This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and developed :

® Each package is installed in a standard directory structure defined at least as follows:

<some root>/<Package mnemonic>/<version
mnemonic>/cmt

or / and(obsolescentonvention

<some root>/<Package mnemonic>/<version
mnemonic>/mgr

This cmt directory holds the main source of information neede@My : therequirements
file and allCMT -related operations are generally executed from this directory.

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized as a valMT package

This structure is a central concept since all relationships between packages relies on the
package identification which unambiguously and exclusively consists in the duet |
package-nameyackage-versioh

e Constructing the internal structure of a package.

Many other parallel branches (similaramt) such asrc, include ortestmay be freely

added to this list according to the specific needs of each package. In particular, a set of such
parallel branches are expected to contbéiary outputs (those that compilers, linkers,

archive managers or other kinds of code or pseudo-code generators can produce). Their
name always corresponds to the particatarfigurationtag used to produce the output

(such as the machine or operating system type)CME toolkit provides, through themt
systemutility, a default value for this token. An environment varig@MTCONFIG) is

also assigned to this value (Sbis sectionfor a complete description of configuratitays).

Each branch may in addition be freely structured, and there is no constraint to the
complexity of thisorganization.

» cmt requirements

*cxx*F

— 'llz —‘?r"_"‘ﬂ :k.l.?‘\j‘{ :1;_1_;
.." \‘-""-m‘ :k_l::__x ﬂ:_lﬂ‘

" doc * html
m *.dat ...
SunOS T
k Linux | * exe *.a *.50
N insure * exe *.a *.50

Structuring apackage.
e Organizing a software base.

A software base is generally composed of multiple coherent sets of packages, each installed
in its specific root directory and forming differgrdckageareas

There are no constraints on the number of such areas into @ki¢hpackages are
installed. We’'ll sedateron how the different areas will be declared and identifieG Ny .

examples of such organization can be :

O A package area

E A package

D || D_| Versions of a package

A private use relationslup

-\.,_ A public use relationship

Structuring a sofwarbase.

4 - The architecture of theenvironment.

This environment is based on the fact that one of its packages (@vfiedprovides the basic
management tool€MT , as a package, has very little specificities and as such itself obeys the
general conventions. The major asymetry betwWeT and all other packages is the fact that
onceCMT is installed it implicitly defines ondefaultroot area for other packages (through the
environment variabl€MTROOT).

Then packages may be installed either in this default root area or in completely different areas.
The only constraint in this case being that their root will have to be specified explicitly.

A typical configuration for this environment consists of selecting a public area (generally

available from several machines through\#s or AFS-like mechanism), installing theMT

basic package, and then installing user packages in this default root or in private ones. One
frequent semantic given to this style of configuration is to consider the packages installed in the
area hanging below default root as the publicly available versions, whereas packages installed
elsewhere are rather meant to be managed in a private context, or in the context of a non public
project. However, dependencies between packages will always be possible (as long as the system
based protections provide appropriate access rights).

CMT is operated through one main user interface ctiiiecommand, which handles tMT
conventions and which provides a set of services for :

® creating a new package, installing it below the default root or in a private area. This
operation will create or check the local package directory tree and generate several minimal
scripts (see the description of ttreatecommand),

® describing or monitoring :

O the relationships between the package and other packages
O the configuration features either specified in the current package, or imported from

related (used) ones. (symbols, patterns, fragments)

O the constituents of the package in terms of libraries, executables, or generated

documents.

e automatically generating the reconstruction scifiptakefiles) from this description.
® recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared librarie€, prototypes, management of interactions betweés and

CMT itself, the management of a similar architecturé/fimdows or OS9, setting up
protections for packages (though locks) etc...).

4.1-

Supported platforms

CMT has been ported and tested on a wide range of machines/operating systems, including :

DEC-Unix V4.0

HP-UX-10 (several types of platforms)

AlX-4

Solaris

IRIX

Several variants of LynxOS

Linux 2.0

Windows 95/98/NT/Windows200(make based environment and
MSDev/VisualC++ environment)

Darwin (Mac OS X)

This in particular means that a package developped on one platform may be re-configured
towards any of these platforms without any change to its configuration description (setup
scripts, makefiles, ...).

5 - Installing a new package.

We consider here the installation of a user package. Inst@INig itself requires special
attention and is described dedicatedsectionof thisdocument.

Therefore, we assume ttaimeroot directory has been selected by the system manager, and that
CMT is already installed somewhere. One first hasetapCMT in order to gain access to the
various management utilities, using for example the shell command:

csh> source
/lal/CMT/v1r12/mgr/setup.csh

or

ksh> . /lal/CMT/v1ri2/mgr/setup.sh

or

dos> call \laNCMT\v1r12\mgr\setup.bat

Obviously, this operatiomust be performed (once) before any otkdT action. Therefore it is
often recommended to install this setup action straight ifotie script.

Thesetupscript used in this example is a constant in@MT environment : every

configured package will have one such setup script automatically generated and installed by
CMT. It is one important entry point to any package (and th@&Md itself). It provides
environment variable definitions and recursive invocations of setup scripts for related

(used packages (A corresponding cleanup script is also provided). This script contains a
uniform mechanism fanterpretingtherequirementdile so as to dynamically define
environment variables, aliases for the package itself and all its used packages. It is
constructed once per package installation bydimecreatecommand, or restored by the
cmtconfig command (if it has bedast).

A package is primarily defined byreameand aversionidentifier (this duet actually forms the
completepackagedentifier). These two attributes will be given as argumentsribcreate such
as in the following example :

csh>cd mydev
csh> cmt create Foo v1
Configuring environment for package Foo version vl.
CMI version vir12. [1]
Root set to /users/dsksi/arnault/nmydev
Systemis al pha [2]
Installing the package directory [3]
Installing the version directory
Installing the cnt directory
Creating setup scripts.
Creating cl eanup scripts.
1. This shows which actual CMT version you are currently using
2. This shows the current configuration tag (also available bgrtiie system
command). In this example this is a Compigha machine
3. This shows the detailed construction of the complete directory structure, starting from
the top directory which has the name of the package. Since we are creating a comgletely
new package, there will be by default only two branches below the version directory :
cmt andsrc .

The package creation occured from the current directory, creating from there the complete
directory tree for this newackage.

In the next example, we install the package in a completely different area, by explicitly
specifying the path to it as a third argumentnd create:

> cmt create Foo vl ~/Packages

Configuring environment for package Foo version
vl.

CMI version vilri2.

Root set to /users/dsksi/arnaul t/Packages.
Systemis al pha

Installing the package directory
Installing the version directory
Installing the cm directory

Creating setup scripts.

Creating cleanup scripts.

Several file creations occurred at this level :
® a minimal directory tree for the package, includéingandcmt (the other branches will be
installed when needed or generated at build time).

® an empty configuration specification file (nantreduirements) installed in themt branch.

e A minimal Makefile (on Unix environments), containing

include $(CMTROOT)/src/Makefile.header
include
$(CMTROOQT)/src/constituents.make

This Makefile does not need any modification to build any of the constituents managed by
CMT . The intermediate makefile fragments will always be re-generated transparently and
automatically at build time. However (and thanks to this feature), this file will not be
modified anymore bYCMT itself. Thus you may insert any particular make statement you
would feel appropriate, typically when you ask for operations that cannot be taken into
account byCMT .

e A similar minimalNMake file (on Windows environments), containing

linclude $(CMTROOT)\src\NMakefile.header
linclude
$(CMTROOT)\src\constituents.nmake

® the setup and cleanup scripts (one flavour for each shell family).
Onemaythen setup this new package by running the setup script (which will not have much
effect yet since the requirements file is empty) :

10

csh> cd ~/mydev/Foo/vl/cmt
csh> source setup.csh

or

csh>cd
~/Packages/Foo/vl/cmt
csh> source setup.csh

or

dos> cd
\Packages\Foo\vl\cmt

dos> call setup.bat

TheFOOROOT andFOOCONFIG environment variables are defined automatically by this

operation.

It should be noted that running the setup script of a package is not always necessary for building

operations. The only situation where running this sengybecome useful, is when an

application is to be run, while requiring domain specific environment variables defined in one of
the used packages. Besides this particular situation, running the setup scripts may not be needed

at all.

Lastly, this newly created package may be removed by the quite similar remove command, using

exactly the same arguments as those used for creatipgdkage.

csh>cd mydev

csh> cmt remove Foo vl

Renovi ng package Foo version vl.

CMTI version vir12.

Root set to /users/dsksi/arnault/nydev.

Systemis al pha

Version vl has been renoved from

[user s/ dsksi/arnaul t/ nydev

Package Foo has no nore versions. Thus it has been
renoved.

or:

csh> cmt remove Foo vl ~/Packages

Renovi ng package Foo version vl.

CMTI version vir12.

Root set to /users/dsksi/arnaul t/Packages.

Systemis al pha

Version vl has been renmpved from

[user s/ dsksi / arnaul t / Packages

Package Foo has no nore versions. Thus it has been renoved.

11

So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to work omjawlicationor on alibrary for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of dsllows:

csh> cd ../src

csh> cat >FooTest.c

#include <stdio.h>

int main 0

{
printf ("Hello Foo\n");
return (0);

}

csh> cd ../cmt

csh> vi requirements

application FooTest FooTest.c
csh> gmake

csh>
./${CMTCONFIG}/FooTest.exe
Hel | o Foo

This can still be simplified by providing the -check option to the applical@dimition:

csh>cd ../cmt
csh> vi requirements

application FooTest -check
FooTest.c

csh> gmake check

Hel 1l o Foo

6 - Localizing a package - The CMTPATH
configuration parameter.

In the next sections, we’ll see that packagdsrencesach other by means agerelationships.
CMT provides a quite flexible mechanism focalizingthe referenced packages.

A given version of a given package is always referred to by usisgsiatement within its
requirements file. This statement should specify the package through kieyese

® its name (such &m)
® ts version (such as/r5)
® optionally its expected location or prefix (suchlad) (also called theisepath)

12

use Cm v7r5

or

useCmv7rs A
or

use Cm v7r5
/projectB/A

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order) :

1. the absolute access path, if tieepathis absolute,

2. the access paths optionally registered in the configuration parameter - see below -
CMTPATH (and in decreasing priority, the first element being searched for first),

3. the default root.

4. the path where the current package is installed,

The configuration paramet€@@MTPATH can be specified either in the environment
variable namedMTPATH or in .cmtrcfiles, which can themselves be located either in the
current directory, in théhomedirectory of the developper or 5{CMTROOT}/mgr In the
Windows environment, this configuration parameter may also be installeRegistry
under either the keys:

e HKEY_LOCAL_MACHINE/Software/CMT/path

e HKEY_CURRENT_USER/Software/CMT/path
(A graphical tool vailable iI®6CMTROOT%\VisualC\install.exg@ermits the interactive
modification of this list)

If the pathargument is specified as a relative path (ie. there is no lesldistacharacter or it's
not adiskon windows machines), it will be used asoffisetto each search case. The search is
done starting from the list specified in tB&TPATH configuration parameter, then using the
default root; and the offset is appended at each sedaden.

TheCMTPATH parameter is thus used as a search list for the packages, and the individual paths
are separated in this list loplons(semi-colonon Windows).

As an example, if we specify ti@MTPATH parameter as follows :

csh> setenv CMTPATH
/users/dsksi/arnault/dev:/exp/virgo/projects

or (in arequirementsfile)

path_append CMTPATH "/users/dsksi/arnault/dev"
path_append CMTPATH "/exp/virgo/projects"”

or (in a.cmtrc file)
CMTPATH=/users/dsksi/arnault/dev:/exp/virgo/projects

Then ausestatement (defined within a given package) containing :

13

use Cm v7r5
use Cmo vl
Cm

(and assuming that the default roofl#s) would look for the packagém from :
1. /users/dsksi/arnault/dev/Cm/v7r5/cmt
2. lexplvirgo/projects/Cm/iv7r5/cmt
3. Nlal/Cm/v7r5/cmt
4. the same path as the current package
Whereas the packaggmo would be searched from :
1. /users/dsksi/arnault/dev/Cm/Cmo/vl/cmt
2. lexplvirgo/projects/Cm/Cmo/v1l/cmt
3. /lal/Cm/Cmo/vl/cmt
4. the directoryCm within the same path as the current package,
The packages are searched assuming that the directory hierarchy below the access paths always
follow the convention :
1. there is a first directory level named according to the package name,
2. then the next directory level is named according to the version tag,
3. then there is a branch namedt,
4. lastly there is @etupscript within thiscmt branch.
Thus the list of access paths is searched for until these conditions are properly met.

The actual complete search list can always be visualized by the command:

>cmt show path

Add path /users/dsksi/arnault/dev from CMIPATH

Add path /exp/virgo/projects from CMIPATH

Add path /lal fromdefault path

Add path /tnp/arnault from current package

#

[users/dsksi/arnaul t/dev:/exp/virgo/ projects:/lal:/tnp/arnault

7 - Managing site dependent features - ThEMTSITE
environment variable.

Software bases managed®WIT are often replicated to multiple geographically distant sites (as
opposed to machines connected through AFS-like WAN). In this kind of situation, some of the
configuration parameters (generally those used for instance to reference local installations of
externalsoftware) take different values.

TheCMTSITE environment variable aegistryin Windows environments, is entirely under the
control of thesite manager and can be set up with a value representing the site (typical values
may belLAL , Virgo, Atlas, LHCb, CERN, etc.).

14

This variable, when set, corresponds tagwhich can be used to select different values for
make macros or environment variables.

A typical use for this tag is to build up actual values for the location path of an external software
package. Here we take the example of the Anaphe utility:

macro AnapheTOP ™" \
CERN "/afs/cern.ch/sw/lhcxx" \
BNL "/afs/rhic/usatlas/offline/external/lhcxx"

LBNL "fauto/atlas/sw/lhcxx"

8 - Configuring a package.

The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file nanmnequirements and installed in themt branch of
the package local tree.

An empty version of this file is automatically created the first time the package is installed, and
the package manager is expected to augment it with configuration specifications.

Many configuration parameters are supposed to be described imeqhiiementdile (one per
package) - see thaetailedsyntax specifications here - namely

the package information about its author(s) and manager(s)

the relationships with other packages

the package constituents (libraries, applications, documents, etc.)

the parameterization of the tools used in the build process (eg. make macros)

the parameterization of the run-time activity (eg. environment variables, search paths, etc.)

Generally, every such appropriate parameter will be deduced on demand freguihements
file(s) through the various query functions available fromctné main driver. Therefore there is
no systematic package re-configuration per se, besides the very first time a package is newly
installed in its location (using thent create action).

Query actions (generally provided using timet showfamily of commands) are embedded in the
various productivity tools, such as the setup shell scripts, or makefile fragment generators.

These query actions always interpret the se¢@firementdiles obtained from the current
packageandfrom the packages in the effectivgedchain. Symbols, tags and other definitions

are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Other configuration parameters are also optionally inserted frolM@ME andUSER context
requirementdiles

Most typical examples of these query functions are:

15

cmt setup builds a shell command line for setting up environment variables

cmt showmacros construct the effective set of inherited make macros

cmt showusesgives the ordered and flattened set of used packages

cmt showconstituentslists the package’s constituents

cmt showpath lists the effective search path for packages.

cmt showstrategiesshows the current setup of various functicdDRIT strategies.

9 - Selecting a specificonfiguration.

A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

the operating system (suchlasux, Windows ...)

the platform (such astel, CompagSun etc...)

the choice of the compiler (such@s+, egcs CC, etc...)

options used for compiling (such agtimizer debugger etc...) or linking

the context specifications (selecting a particular version of a firmware, selecting a database
server, ...)

Carefully describing this configuration is essential both for maintenance operations (so as to
remember the precise conditions in which the package was built) and when the development area
is sharedbetween machines running different operating systems.

9.1- Describing aconfiguration.

CMT relies on several complementary conventions or mechanisms for this description and
the associated management.

® The basic binary specification automatically computed by CMT in the
${CMTROOT}mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type and the
operating system type (using a mixing of thrame standardJNIX command with
various operating system specific definitions such ag\HE&baseds sysname
command)

® The CMTCONFIG environment variable, filled in by default from the latter, but which
can be manually overridden either from the shell or from the requirements files
themselves

® The CMTSITE environment variable defines one additional configuration tag, which
characterizes the current site.

® The value given by thenamestandard Unix facility is always a valid configuration
tag.

® The concept of user defing¢aly set Tags are additional qualifiers for the configuration,
they are entirely user defined, and have no a-priori semantics.

16

CMT defines the concept olirrent tagset as the set of currently active tags. And the
current active tag set can always be visualized usingnthshowtagscommand.

9.2- Defining the usertags.

The user configuration tags can generally be specified though various complementary
means:

® CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

> export
CMTSITE=CERN

e CMTSITE and CMTCONFIG can alternatively be specified usings#tstatement in a
requirements file

set CMTSITE "CERN"
set CMTCONFIG "${CMTBIN}" sun
"Solaris-CC-dbg"

e Additional tags may also be defined as a mixture of other tags, usitagts@atement
(in a requirements file):

tag newtag tagl tag2
tag3

which means that:
O newtagdefines a mixture of tagl tag2 tag3
O whennewtagis active, then both tagl, tag2 and tag3 are simultaneously active
9.3- Activating tags.
By default, only CMTCONFIGunameand CMTSITE are active at any time.

Then it is possible tactivatealternate tags through the following argumentangcmt
command:

® -tag=<primary-tag>
will cleanup the complete current tag set, and provide the new main tag.
® -tag_add=<tag-list>
will add to the current tag set the tags specified in the comma separated list

® -tag remove=<tag-list>

17

will remove from the current tag set the tags specified in the comma separated list

Giving these arguments generally make the selected tag set active only during the selected
command. However if instead they are given tosiiigrcesetup.[c]shcommand, then the
new active tag set becomparsistentfor the current session.

The current active tag set can always be visualized usingrthshowtagscommand.

>cmt show tags

Li nux

LAL

> cmt -tag_add=tagl,tag2,tag3 show tags
Linux

LAL

tagl

tag2

tag3

>cmt show tags
Linux

LAL

> source setup.sh
-tag_add=tag1,tag2,tag3
>cmt show tags
Linux

LAL

tagl

tag2

tag3

> source setup.sh -tag_remove=tag2,tag3
>cmt show tags
Linux

LAL

tagl

Typical usages of those extra tage:

when using special compiler options (e.g. optimization, debugging, ...)

for switching to different compilers (e.gccversus the native compiler)

when one uses a special debugging environment suokwags or Purify

when using special system specific features (such as whether one uses thread-safe
algorithms or not)

Due to the tag set concept, it is possible to specify, for instance, that although the current
context will still use the default binary tag (ie CMTCONFIG is not changeépag
environment isised.

sh>cd/Bar/vl/cmt
sh> . setup.sh
-tag_add=debug

18

Then all symbol definitions providing specific values triggered byd#irig selector will be
selected, such as:

macro_append cppflags
\
debug " -g

n

10- Working on a package.

In this section, we'll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are continuingxhmpleof theFoo
package already used in this document.

10.1- Working on a library.

Let's assume, as a first example, thatRbe packages originally composed of one library
libFoo.a itself made from two source$00A.candFooB.c A shared flavour of the library
libFoo.soorlibFoo.sl orlibFoo.dll) is alsoforeseen.

The minimal set of branches provided®WT (once themt create operation has been
performed) for a package includas for the sources antnt for theMakefilesand other
scripts.

The various tool€MT provide will be fully exploited if one respects the roles these
branches have to play. However it is always possible to extend the default understanding
CMT gets on the package by appropriate modifiers (typically by overradamglard

macros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a software package.

We first have to create the two source files intostfeebranch (typically using our favourite
text editor). Then a description of the expected library (ie. built from these two source files)
will be entered into theequirements file. The minimal syntax required in our example will
be:

csh>cd ../cmt
csh> vi requirements 1)
library Foo FooA.c FooB.c

1. therequirementsfile located in themt branch of the package receives the
description of thidibrary component. This is done using diteary statement.

Thecmt createcommand did generate a simpMekefile(or NMake file) which is generaly
sufficient for all standard operations, sif€®IT continuously and transparently manages
the automatic reconstruction of all intermediate makefile fragments. We therefore simply
and immediately execute gmakefalbows:

19

...vl/cmt> [glmake

Rebuilding cmt_path.make [1]
Rebuilding constituents.make [1]
Rebuilding library links [1]

Rebuilding setup.make [1]
alpha.make ok [2]

Library Foo [1][3]

starting Foo [4]

gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
Rebuilding ../alpha/Foo_dependencies.make [1]
gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
Now rebuilding ../src/FooA.pp

Now rebuilding ../src/FooB.pp

Foo : Protos ok

../alpha/FooA.o

cd ../alpha/; cc -c -l../src/ -1"../src/" -stdl -0 FOOA.o ../src/FOOA.C
../alpha/FooB.o

cd ../Jalpha/; cc -c -l../src/ -1"../src/" -stdl -0 FooB.o ../src/FooB.c
library

cd ../alpha/; ar -clr ../alpha/libFoo.a ../alpha/FooA.o ../alpha/FooB.o
ranlib ../alpha/libFoo.a

cat /dev/null >../alpha/Foo.stamp

cd ../alpha/; Nlal/CMT/v1r12/mgr/cmt_make_shlib_common.sh noextract alpha Foo
------ > Foo : library ok

------ > Foo ok

gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
all ok.

1. The very first time this rebuilding operation occurs, some makefile fragments have
automatically been built so as to contain the extended set of Makefile macros deduce
from the effective configuration (read from tteguirements file). These fragments are
automatically rebuilt (if needed) each time one ofrtgpiirements file changes.

2. The directory which is used for the binaries (i.e. the results of compilation or the librarjes)
has been automatically created by a generic tédirst) which is defined within
[N]Makefile.header. A new binary directory will be created each time a new value of the
CMTCONFIG environment variable is defined otag is provided on the command line
to make.

3. Each component of the package (be it a partidieary or a particulaexecutablgwill
have its owrmakefilefragment (named/${CMTCONFIG}/<name>.[n]mak[e]). This
dedicatednakefiletakes care of filling up the library and creating the shared library (on
the systems where this is possible).

4. These dedicatechakefilesare automaticallgxecutedrom the main one, and tls¢andard
make macra@onstituentscan be redefined (e.g. in thegquirementdile) so as to
customize the building sequence.

[oN

or, for nmake:

...vl/cmt> nmake /f nmake

This mechanism relies on some conventionatrosand incrementaargetsused within

the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It's quite important to understand the list of possible customization macros, since
this is the main communication medium betwE&MT and the package manager. See the

20

completetableof those conventional macro when you want to interact with the standard
CMT behaviour.

10.2- Working on an application

Assume we now want to add a test program to our development. Then we create a
FooTest.csource, and generate the associated makefile (specifying that it will be an
executable instead of a library) :

csh>cd ../src
csh> emacs FooTest.c

csh>cd ../cmt
csh> vi requirements

application FooTest FooTest.c

So that we may simply build the complete stuff by running :

> [g]make

Checking configuration

Rebuilding cmt_path.make

Rebuilding constituents.make

Rebuilding setup.make

Rebuilding alpha.make

alpha.make ok

------ > starting FooTest

Application FooTest

gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt
Rebuilding FooTest_dependencies.make

gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
Now rebuilding ../src/FooTest.pp

FooTest : Protos ok

cd ../alpha/; cc -c -l../src/ -I../src/ -std1 .Isrc/FooTest.c

cd ../alpha/; cc -0 FooTest.exe.new ../alpha/FooTest.o ;\

mv -f FooTest.exe.new FooTest.exe

------ > FooTest ok

gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/vl/cmt’
------ > all ok.

Which shows that a prograRooTest.exehas been built from our sources. Assuming now
that this program needs to accessRbe library, we’ll just add the following definition in

therequirementsfile :

21

macro Foo_linkopts " -L$(FOOROOT)/$(Foo_tag) -IFoo "\
WIN32 " $(FOOROOT)/$(Foo_tag)/Foo.lib "

TheFoo_linkopts conventional macro will be automatically inserted within the
use_linkoptsmacro.

Like all other make macros used to build a component; dloe linkopts will be specified
within therequirements which gives several benefits:

e variants of the macro definition can be provided

® monitoring features cEMT such as themt show macroFoo_linkopts command can
be used later on

® macros defined this way may be later on inherited by client packages whicisevill
our package.

10.3- Working on a test or externalapplication

It is also possible to work ontastor externalapplication, ie. when one does not wish to
configure the development for this application ustMT . Even in this case, it is possible
to benefit from the packages configured ustdT by partially usingCMT , just forused
relationships.

Here, no special convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to describegu@ements file theuse
relationships, as well as tiheake macro definitions, quite similarly to the package entirely
configured usingCMT .

Most of the options provided by tleent user interface are still available in these conditions.

10.4- Construction of a globalenvironment

A software base generally consists in mpagkagessome of them providinlipraries or
documentsothers providingpplications some providing both, some providing jgaies
towards external software products.

On another view, this software base may a mix of packages shared between several projects
and sets of packages specific to various projects. One may have several software bases as
well (combined using thEMTPATH environment variable).

In such contexts, it is often desirable that a given project defines its own selection of all
existing packages. This can easily be done @NT by defining gprojectpackage,
containing onlyusestatements towards the appropriate selection of packages for this
particular project.

Let’s consider as an example the project naMgBroject. We may create the package
namedMyProject similarly to any other package :

22

csh>cd
csh> cmt create MyProject v1

Then therequirements file of this new package will simply contain a seueéstatements,
defining theofficial set of validated versions of the packages required for the project. This
mechanism also represents the notioglobal releasetraditionally addressed in
configuration management environments

package MyProject

use Cm v7r6

use Db v4r3

use El v4r2

use Su v5

use DbUI vir2 Db

use EIUI virl El

use VSUUI v3 Su/VSU
use VMM vl

use VPC v3

Then any user wanting to access the so-calificial release of the package set appropriate
to the projecMyProject will simply do (typically within its login shell script) :

a login script

source /MyProjectDevArea/MyProject/vl/cmt/setup.csh

Later on, future evolutions of thdyProject package will reflect progressive integration
steps, whictvalidatethe evolutions of each referenced package.

11 - Defining a documentgenerator

In a Unix environment, documents are built usimake (well generally itgnuflavour) or

nmake in Windows environments. The basic mechanism provid&Mii relies onmake
fragmentpatternscontaining instructions on how to rebuild document pieces. Many such
generators are provided BMT itself so as to take care of of the most usual cases (e.g.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones providelby This

mechanism is very similar to the definition or re-definitionmafcrosor environment variables in
that every new generator has to be first declaredég@rements file belonging to a package
(CMT actually declares all its default generators withimdtguirements file), allowing all its

client packages to transparently acquire the capacity to generate documents of that sort.

23

CMT manages two categories of constituents:
1. ApplicationsandLibraries are handled using pre-defined make fragments (mainly related
with languages) and behaviour.
2. Documentoffer a quite general framework for introducing completely new behaviours
through user-defined make fragments. This includes actually generating documents, but also
simply performing an operation (in which case sometimes naogaiments produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types.

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes named "document-style™), which
corresponds to a dedicated make fragment of that name. Then, when specifledimant
statement, this make fragment will instanciatedonce or several times (typically once per

source file) to construct a complete and functional make fragment, containing one main target.
Both the resulting make fragment and the make target will have the namecohstiéuent.

11.1- An example : thetex document-style

This section discusses one simple example (the production of postscript from latex files)
available in the standar@MT distribution Kit.

Converting a latex source file into a postcript output implies to chain two text processors,
with an intermediate dyormat.

The fragment described here exactly performs this sequence, taking care of intermediate file
deletion. The document style is named "tex" (the associated fragment shown here and
named "tex" is actually provided I§MT itself, and can be looked at in
${CMTROOT}/fragments/tex.) :

tex
${CONSTITUENT} :: ${FILEPATHYS${NAME}.ps

${FILEPATH}${NAME}.dvi : ${FULLNAME}
cd ${doc}; latex ${FULLNAME}

${FILEPATH}/${NAME}.ps : ${FILEPATH}/${NAME}.dvi
cd ${doc}; dvips ${FILEPATH}${NAME}.dvi

${CONSTITUENT]clean :
cd $(doc); /bin/rm -f ${FILEPATHYS{NAME}.ps ${FILEPATH}Y${NAME}.dvi

® They are declared in t&MT 's requirementdile as follows :

make_fragment tex -header=tex_header

24

where:
1. "tex" represents both the fragment name and the document style.

2. the-header=tex_heademoption indicates that the generated makefile fragment
will first include this header (which is actually empty in this case)

® A user package willing to apply this behaviour will have to include ireggsirements
file a statement similar to the following:

document tex MyDoc -s=../doc docl.tex doc2.tex

where:
1. The first parameter "tex" is the document-style
2. The second parameter "MyDoc" is used for building the constituent’s makefile
(under the name MyDoc.make) and for providing the make target "MyDoc".
3. The other parameters (docl.tex and doc2.tex) are the sources of the document.
Explicit location is required (since default is currently defined to be ../src)
4. The constituent’s makefile MyDoc.make is built as follows :
1. Install a copy of th&CMTROOT/fragments/make_headergeneric
fragment
2. Install a copy of th&é CMTROOT/fragments/tex_headerfragment
3. For each of the sources, install a copy of the fragment "tex"
4. Install a copy of th&éCMTROOT/fragments/cleanup_headerfragment

The result for our example is:

25

—=—========= MyDOC_make

Document MyDoc
#

Generated by
#

help ::
@echo 'MyDoc’

docl_dependencies = ../doc/docl.tex
doc2_dependencies = ../doc/doc2.tex

MyDoc :: ../doc/docl.ps

../doc/docl.dvi : $(doc)docl.tex
cd ${doc}; latex $(doc)docl.tex

../doc/docl.ps : ../doc/docl.dvi
cd ${doc}; dvips ../doc/docl.dvi

MyDocclean ::
cd $(doc); /bin/rm -f ../doc/docl.ps ../doc/docl.dvi

MyDoc :: ../doc/doc2.ps

../doc/doc2.dvi : $(doc)doc2.tex
cd ${doc}; latex $(doc)doc2.tex

../doc/doc2.ps : ../doc/doc2.dvi
cd ${doc}; dvips ../doc/doc2.dvi

MyDocclean ::
cd $(doc); /bin/rm -f ../doc/doc2.ps ../doc/doc2.dvi

clean :: MyDocclean
cd.

MyDocclean ::

11.2- How to create and install a new documerstyle

This section presents the general framework for designing a docgerarator.

1. Select a name for the document style. It should not clash with existing ones (use the
cmt showfragments for a complete list of document types currently defined).

2. A fragment exactly named after the document style name must be installed into a
subdirectory nameftagments below thecmt branch of a given package (which

becomes therovider package).

26

3. Optionally, two other fragments may be installed into the same subdirectory, one of
them will be theneaderof the generated complete fragment, the other will beailgr

4. Those fragmentsiustbe declared in theequirementdile of the provider package as

follows:

make_fragment <fragment-name> [options...]

where options may be :

-suffix=<suffix>

provide the suffix of the output files (without the dot)

-header=<header>p

rovide another make fragment meant to be prepended to the
constituent’s make fragment.

-trailer=<trailer>

provide another make fragment meant to be appended to the
constituent’s make fragment.

-dependencies

install the automatic generation of dependencies into the constitu
make fragment

ent’'s

Once a fragment is installed and declared, it may be used lnli@mypackage (ie a
packageausingthe provider), and queried upon using tbenmand

> cmt show fragment <fragment name>

which will show where this fragment is defined (ie. in which of the psettages).

Thecmt showfragments commands lists all declared fragments.

If a package re-defines an already declared make fragment, ie it provides a new copy of the
fragment (possibly with new copies of the header and the trailer), and declares it inside its
requirements file, then this package becomes the new provider for the dostyteent

For building a fragment, one may use pre-defined generic "templates" (which will be
substituted when a fragment is copied into the final constitueratisfile).

27

CONSTITUENT the constituent name

CONSTITUENTSUFFIX| the optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)
FILENAME the complete source file name (only including the suffix)
NAME the short source file name (without directory and suffix)
FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

(only available in headers) the list of outputs, formed by a set of
expressions :
OBJS

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

Templates must be enclosed between ${ and } or between $(and) and will be substituted at
the generation time. Thus, if a fragment contains the following text :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

then, the expanded constituent’s makefile will contain (refering to the étathple)

$(MyDoc_output)docl.ps

Which shows that make macros may be dynamically generated.

28

P T S e

.. /emt /fragments/ 2
4 /doc_header - Client pﬂc'kage

-

y ,_::;__—_' JdOC —————
P f:_:_____ — /doc_trailer _\

d doc header J
/ package doc_provider —

| R
":-.\h‘ma]:e__fragment doc_header > doc (a.txt)

~—make fragment doc trailer

make fragment doc \ A doc (b.txt)

W
S
®

~header=doc_header \ N
—trailer=doc trailer y 8 doc (¢.txt)
B . S, 1
B Provider package i doc_trailer)

mydoe. malke A

ise
package doc/client

document doc mydoc a.txt b.txt c.txt
‘\.H_____ ____,--"

The architecture of documegéneration.

11.3- Examples
1. rootcint

It generates C++ hubs for the Cint interpreter in Root.

rootcint
(src){NAME}.cc :: ${FULLNAME}
${rootcint} -f (src){NAME}.cc -c ${FULLNAME}

2. agetocxx and agetocxx_header.

It generates C++ source files (xxx.g files) from Atlas’ AGE description files.

29

———=—=—==== agetocxx
output=$(${CONSTITUENT}_output)

$(output)${NAME}.cxx : $(${NAME}_cxx_dependencies)
(echo *#line 1 "${FULLNAME}"; cat ${FULLNAMEY}) > /tmp/${NAME}.gh.c
gcc -E -I1$(output) $(use_includes) -D_GNU_SOURCE \
cd ${output}; $(agetocxx) -0 ${NAME} -ohd ${FILEPATH} \
-ohp ${FILEPATH} /tmp/${NAME}.gh
rm -f tmp/${NAME}.gh /tmp/${NAME}.gh.c
cd $(bin); $(cppcomp) $(use_cppflags) S(S{CONSTITUENT} cppflags) \
$(${NAME}_cppflags) ${ADDINCLUDE} $(output)${NAME}.cxx
cd $(bin); $(ar) $(${CONSTITUENT}ib) ${NAME}.o; /bin/rm -f ${NAME}.0

========= agetocxx_header
${CONSTITUENT}lib = $(bin)lib${CONSTITUENT}.a
${CONSTITUENT}stamp = (bin){CONSTITUENT}.stamp
${CONSTITUENT}shstamp = (bin){CONSTITUENT}.shstamp

${CONSTITUENT} :: dirs ${CONSTITUENT}LIB
@/bin/echo ${CONSTITUENT} ok

${CONSTITUENTILIB :: $(${CONSTITUENT}ib) $(${CONSTITUENT}shstamp)
@/bin/echo ${CONSTITUENT} : library ok

$(${CONSTITUENT}lib) $(${CONSTITUENT}stamp) :: ${OBJS}
$(ranlib) $(${CONSTITUENT}ib)
cat /dev/null >$(${CONSTITUENT}stamp)

$(${CONSTITUENT}shstamp) :: $(${CONSTITUENT}stamp)
cd $(bin); $(make_shlib) $(tag) ${CONSTITUENT}\
$(${CONSTITUENT}shlibflags); \
cat /dev/null >$(${CONSTITUENT}shstamp)

It must be declared as follows :

make_fragment agetocxx -suffix=cxx -dependencies -header=agetocxx_header

12- The tools provided byCMT

The set of conventions and tools provideddMT is mainly composed of :

® the syntax of theequirementsfile,

® and the generamt user interface, available in thegr branch of th&€MT package.
Thesetupscript found in th€MT installation directory actually adds its location to the
definition of the standardNIX PATH environment variable in order to give direct access to the
maincmt user interface.

30

The sections below will detail the complete syntax ofrémeiirements file since it is the basis
of most information required to run the tools as well as the main commands available through the
cmt user interface.

12.1- The requirementsfile

12.1.1- The general requirementssyntax

® A requirements file is made statementseach describing one named
configuration parameter.

Statements generally occupy one single line, but may be split into several lines
using the reverse-slash character (in this case the reverse-slash chausttier
the last character on the line or must be only followed by sgauacters).

Each statement is composed of words separated with spaebsilations.
The first word of a statement is the name of the configuraoameter.

The rest of the statement provides the value assigned to the configuration
parameter.

® \Words composing a statement are separated with space or tab characters. They
may also be enclosed in quotes when they have to include space or tab characters.
Single or double quotes may be freely used, as long as the same type of quote is
used on both sides of the word.

Special characters (tabs, carriage-return and line-feed) may be inserted into the
statements using an XML-based convention:

tabulation <cmt:tab/>
carriage-return ~ <cmt:cr/>

line-feed <cmt:If/>

e Comments : they start with thiecharacter and extend up to the end of the current
line.

12.1.2- The completerequirements syntax

12.2- The concepts handled in the requirementtle

31

12.2.1- Meta-information : author, manager

The author and manager names

12.2.2- package,version

The package name and version. Thes statements are purely informational.

12.2.3- Constituents : application, library, document

Describe the composition of a constituent. Application and library correspond to the
standard meaning of an application (an executable) and a library, while document
provides for a quite generic and open mechanism for describing any type of document
that can be generated frasaurces.

Applications and libraries are assigned a name (which will correspond to a generated
make fragment, and a dedicated mtdget).

A document is first associated with a document type (which must correspond to a
previously declared make fragment). The document name is then used to name a
dedicated make fragment and a meddget.

Various options can be used when declariograstituent:

32

option validity usage

When used in a Windows environment,
-windows applications | generates a GUI-based application (rathe
than a console application)

=

-no_share libraries do not generate the shared library
_no_static libraries glo not generate the static librgnot yet
implementej
i applications, ,
prototypes libraries do generate the prototype header files
-no_prototypes qpplu_:atlons, do not generate the prototype header fileg
libraries
o generate a check target meant to executq the
-check applications . N
rebuilt application
_ install the constituent within this group
-group=group-name any
target
e applications, | provide a suffix to names of all object files
-suffix=suffix NS : .
libraries generated for this constitugfif)
o explicitly import for this constituent the
. _ applications,
-import=package libraries standard macros from a package that hag the

-no_auto_importsoption set

define a variable and its value to be giver to

variable-name=variable-valuany the make fragmerfg)

When several constituents need to share source files, (a typical example is for
building different libraries from the same sources but with different compiler
options), it is possible to specify an optional output suffix with the
-suffix=<suffix> option. With this option, every object file name will be
automatically suffixed by the character strirguffix>", avoiding name conflicts
between the different targets, as in the follonexgmple:

library AXt -suffix=Xt *.cxx
library AXaw -suffix=Xaw *.cxx

It's possible to specify in the list of parameters one or more pairs of
variable-name=variable-value (without any space characters around'tiie
character), such as in the nexample:

33

make_fragment doc_to_html (1)

document doc_to_html Foo output=FooA.html FooA.doc (2) (3)

1. This makefile fragment is meant to contain some text conversion actions and
defines adocumentype nameddoc_to_html.

2. This constituent exploits the document tyfwe to _htmlto convert the
sourceFooA.docinto an html file.

3. The user defined template variable naroatput is specified and assigned
the valueFooA.html. If the fragmentloc_to_html contains the string
${output}, then it will be substituted to this value.

12.2.4- Groups

Groups permit the organization of the constituents that must be consistently built at the
same development phases or with similar constraints.

Each group is associated with a make target (of the same name) which, when used in
the make command, selectively rebuilds all constituents ofjtbigp.

The default group (into which all constituents are installed by default) is naimed
therefore, running make without argument, activates the default targdt)(ie.

As a typical usage of this mechanism, one may examplify the case in which one or
several constituents are making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might require a controled re-build.
This is especially useful for having these constituents only rebuilt on demand rather
than rebuilt automatically when the default make commanghis

One could, for instance specify within the requirements file

Constituents belonging to the default all group
... constituents without group specification ...

Constituents belonging to specific groups

library Foo-objy -group=objy < sources making use of Objectivity >
application FooGUI -group=graphics < sources making use of Qt >
application BarGUI -group=graphics < sources making use of Qt >

(Beware of the position of the -group option which must be located after the constituent
name. Any other position will be misunderstoocCIWT)

Then, runninggmakeall would only rebuild the un-grouped constituents, whereas
running

34

> gmake objy
> gmake graphics

in the context of th&oo package would rebuildbjy related ographicsrelated
constituents.

12.2.5- Languages

Some computer languages are known by defautMy (C, C++, Fortran77, Java,
lex, yacc. However it is possible to extend this knowledge to any other langage.

We consider here languages that are able to produce object filesduoces.

Let's take an example. We would like to install support for Fortran90. We first have to
declarethis new language support@T within therequirements file of one of our
packages (Naotice that it's not at all required to mo@RNT itself since all clients of

the selected package will inherit the knowledge ofldmniguage).

The language support is simply nanfedran90 and is declared by the following
statement:

language fortran90 \
-suffix=f90 -suffix=F90 \ [1]
-linker=$(f90link) \ [2]
-preprocessor_command=$(ppcmd)

1. The recognized suffixes for source files will 188 andF90

2. The linker command used to build a Fortran90 application is described inside the
macro name@O0link (which must defined in this requirements file but which can
also be overridden by clients)

The language support being nanfiedran90, two associated make fragments are
expected, one under the nafodran90 (for building application modules), the other
with the namédortran90_library (for modules meant to be archived), both without
extension.

These two fragments should be installed infthgments sub-directory of the cmt
branch of oupackage.

Due to the similarity of the example to fortran77, we may easily provide the expected
fragments simply by copying the f77 fragments foun@MT (thus the fragments
${CMTROOT}/fragments/fortran and${CMTROOT}/fragments/fortran_library

These fragments make use of tbemp macro, which holds the fortran77 compiler
command (through thi@r macro).

macro for 77"\

.r.n.acro fcomp "$(for) -c $(fincludes) $(fflags) $(pp_fflags)"

35

We therefore simply replace these macros by new macros ri@@uanp andfoo,
defined adollows:

macro f90 "fo0"

.rﬁacro f90comp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

Some languages (this has been seen for example in the IDL generators in Corba
environments) do provide several object files from one unique source file. It is possible
to specify this feature through the (repetitivejtra_output_suffix option likein:

language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

where, in this case, two object files are produced for each IDL source file, one named
<name>.o the other namedname>_skel.a

12.2.6- Symbols : alias, set, set_append, set_prepend,
set_remove, macro, macro_append, macro_prepend,
macro_remove, macro_remove_all, path, path_append,
path_prepend,path_remove

Thealias keyword is translated into a shell alias definition,
Thesetkeyword is translated into an environment variat@enition.
Themacro keyword is translated intoraake’'s macrodefinition.

Thepath keyword is translated intogath-like environment variable, which is

supposed to be composed of search paths separated with colon chargcterndnix)

or semi-colon charactet$ (on Windows). However, it is highly recommended to
construct such a variable by iteratively concatenating individual items one by one using
path_appenar path_prepend

Variants of these keywords are also provided for modifying already defined symbols.
This generally happens when a package needs to modify an inherited symbol (ie. which
has been already defined by a used package). Through the kegebralspend
set_prepend set_remove macro_append macro_prepend macro_remove
macro_remove_al] path_append path_prepend path_removeone can append or
prepend a text to the existing symbol value or remove a part from ipafheremove
keyword removes all individual search paths tmattainthe specifiedub-string.

The translations occur while running either the setup scripts (for alias, set or path) or
the make command (fonacro).

All these definitions follow the sanpattern:

36

<symbol-type> <symbol-name> <default-value> [<tag> <value>

]

The symbol-name identifies the symbol for modification operations. The default-value
is optionally followed by a set of tag/value pairs, each representing an alternate value
for this symbol. Be aware that there is only one nhame space for all kinds of symbols.

Therefore, if a symbol was originally defined usingnacro statement, using

set_appendio modify it will produce an undefined result.

The tag is used to select one alternate value to replace the default value, when one of

the following condition isnet:

with a matching tag (Note that this is a recursive definition).

Examples of such definition are :

It matches the value of the CMTSITE environment variable (or registry)

It matches the value provided by the uname Unix command (when available)

It matches the value of the CMTCONFIG environment variable (or registry)

It matches the value specified in tit@g=tag argument to the cmt command.

It matches one user defined tag (see the tag keyword) which itself is associated

package CMT

set CMTCC "cc"\
HP-UX "cc-Aa +z -D_HPUX_SOURCE"

public
macro cflags "-g"\
HP-UX "-g -Aa +z -D_HPUX_SOURCE" \
hp700_ux101 "-g -fpic -ansi"\
alpha "-g -std1" \
alphat "-g -std1l -DCTHREADS" \
insure "-g -Zuse -std1"\
AIX "-g -D_ALL_SOURCE -D_BSD"
macro cppflags "-g"\
HP-UX "-g -Aa +z"\
hp700_ux101 "-g -fpic"
macro fflags "-g"
macro src "..[srcl"
macro inc "..Isrcl"
macro mgr ".Jemy"
macro SHELL "/bin/sh"
12.2.7- use

Describe the relationships with other packages; the generic syntax is

37

use <package> [<version> [<root>]]

Omitting the version specification means that the most recent version (ie. the one with
highest ids) that can be found from the search path list will be automasekdited.

The root specification can be relative (ie. on Unix it does not contain a leading '/’
character). In this case, this prefix is systematically considered when the package is
looked for in the search path list. But it can also be absolute (ie. with a leading '/’
character on Unix), in which case this path takes precedence over the standard search
path list (se€€MTPATH).

Examples of such relationships are

Packages installed in the default root :
use OnX v5r2

use CSet v2r3

use Gb v2rl

A package installed in a root one step below the root :
use CS v3rl virgo

Back to the default root :
use Cmv7r3

Get the most recent version of CERNLIB
use CERNLIB

By default, a set of standard macros, which are expected to be specified by used
packages, is automatically imported from them (segl¢ta@ledlist of these macros).
This automatic feature can be discarded using the

-no_auto_importsoption to the use statement, or re-activated using the
-auto_imports. When it is discarded, the macros will not be transparently inherited,
but rather, each individual constituent willing to make use of them will have to
explicitly import them using thémport=<package option

When ausestatement is in private section, the corresponding used package will only
be reached if wheBMT operations occur in the context of the holder package.
Otherwise (ie if the operation occurs in some upper level client package, then this
privately used package will be entirely hiddé€mhis behaviour follows a very similar
pattern to the private or public inheritance©#+). Suppose we have the following
organization:

38

package A

use Bvl
use D vl

package B

private
use C vl
use D vl

® all operations done in the context of package B sei#both packages C and D
® all operations done in the context of package A s@#both packages B and D,
but not package C

12.2.8- pattern, apply_pattern, ignore_pattern

Often, similar configuration items are needed over a set of packages (sometimes over
all packages of a project). This reflects either similarities between packages or generic
conventions established by a project ¢eam.

Typical examples are the definition of the search path for shared libraries (through the
LD_LIBRARY_PATH environment variable), the systematic production of test
applicationsetc.

The concept of pattern proposed here implements this genericity. Patterns may be
eitherglobal, in which case they will be systematically applied onto every package, or
local (the default) in which case they will be applied on demand only bypsaitage.

The general principle of a pattern is to associate a templated (settaflatement(s)

with the pattern name. Then every time the pattern is applied, its associated statements
are applied as if they were directly specified in the requirements file, replacing the
template with its current value. If several statements are to be associated with a given
pattern, they will be separated with the" separator pattern (beware of really

enclosing the ";" between two spad®aracters).

Pattern templates are names enclosed between the '<’ and >’ characters. A set of
predefined templates are automatically provide@ M :

package the name of the current package

PACKAGE | the name of the current package in upper tase

version the version tag of the current package

path the access path of the current package

39

Then, in addition, user defined templates can be installed within the pattern definitions.
Their actual value will be provided as arguments to the apply_patsement.

User defined templates that have not been assigned a value when the pattern is applied
are simplyignored.

Someexamples:
1. Changing the standard include segvakh.

The standard include path is set by defauli{tgpackage>_root}/src However,

often projects need to override this default convention, and typical example is to
set it to a branch named with the package name. This convention is easily applied
by defining a pattern which will apply the include_path statemefulasys:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a package nank&tkA will expand this pattern dsllows:

include_path ${PackA_root}/PackA/

2. Providing a value to theD_LIBRARY_PATH environmentariable

On some operating systems (eg. Linux), shared library paths must be explicited,
through an environment variable. The following pattern can automate this
operation:

pattern Id_library_path \
path_remove LD_LIBRARY_PATH "/<package>/" ; \
path_append LD_LIBRARY_PATH ${<PACKAGE>ROOT}Y${CMTCONFIG}

In this example, the pattern was not set global, so that only packages actually
providing shared libraries would be concerned. These packages will simply have
to apply the pattern dellows:

apply_pattern Id_library_path

The schema installed by this pattern provides first a cleanup of the
LD_LIBRARY_PATH environment variable and then the new assignment. This
choice is useful in this case to avoid conflicting definitions from two different
versions of the sanmgackage.

3. Installing a systematic test application in@dlckages

Quality assurance requirements might specify that every package should provide a
test program. One way to enforce this is to build a global pattern declaring this
application. Then every make command would naturally ensure its actual

40

presence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern (<other_sources>) permits the package to
specify extra source files to the test application (the pattern assumes at least one
source file<package>test.cxx).

12.2.9- branches

Describe the specific directory branches to be added while configuripgthkage.

branches <branch-name> ...

These branches will be created (if needed) at the same levelasttheanch. Typical
examples of such required branches mainbleide, test or data.

12.2.10 build_strategy, version_strategy

Users can control the behaviour@T through a set of strategy specifications. The
current implementation only provides such control over two mechanisms

® the way version tags are interpreted and compared tcodaeh

The following keywords aravailable:

This is the default behaviour. Version tags truely consider majpr
best_fit ids, minor ids and patch ids with their complete backward
compatibility semantics

Same as best_fit except that different major ids are not seen 3
best fit_ no_check incompatible. The greatest id (for major, minor and patch ids)
always selected

[IR7)

first_choice The first version tag specified in the use chain is selected
last_choice The last version tag specified in the use chain is selected
keep_all Internal use only : all referenced versions are kept

e the way makefile fragments for applications and libraries are generated.

Currently this only concerns the automatic generation of prototype header files for
C source files. Thus only one keyword is possilgetotypes (and its opposite
no_prototypes, the defaulCMT behaviour being to generate prototyaders.

41

12.2.11- setup_script,cleanup_script

Specify user defined configuration scripts, which will be activated together with the
execution of the maigetup andcleanupscripts.

The script names may be specified without any access path specification, in this case,
they are looked for in themt or mgr branch of the package itself. They may also be
specified without anycshor .sh suffix, the appropriate suffix will be appended

accordingly when needed. Therefore, when such a user configuration script is specified,
CMT expects that the corresponding shell scripts actually exist in the appropriate
directory (thecmt branch by default) and is provided in whatever format is appropriate
(thus suffixed bycshand/or.sh).

12.2.12- include_path

Override the specification for the default include search path, which is internally set to
${<package_root}/src.

Specifying the valuaone(a reserved CMT keyword) means that no default include
search path is expected from CMT, and thus no -1 compiler option will be generated by
default (generally this means that user include search paths should be specified via
include_dirsinstead).

12.2.13- include_dirs

Add specifications for non-standard include acqedhs.

12.2.14- make_fragment

This statement specifies a specialized makefile fragment, used as a building brick to
construct the final makefile fragment dedicated to builcctimestituents.

There are basically three categories of such fragments :
1. some are provided BMT itself (they correspond to its internal behaviour)
2. others handle the language support
3. and the last serve as specialized document generators.

The fragments defined @MT canbe:

® those used to construct the application or library constituents. Their semantic is
standardized (they are all associated wildinguagestatement in the CMT
requirements file).

c c_library cpp cpp_library lex lex_library fortran fortran_library yacc
yacc_library jar jar_header java java_copy java_header check_java
cleanup_java

e those used internally by CMT as primary building blocks for assembling the
makefile. (Generally developers should not see them).

42

cleanup_objects application make_setup_nmake constituent
application_header constituents_header buildproto protos_header
0s9_header dependencies check application dependencies_and_triggers
check_application_header document_header library cleanup library _header
cleanup_application library_no_share cleanup_header make header
make_setup cleanup_library make_setup_header

® some document generators whinhybe used if needed, but are not mandatory:

installer installer_header readme readme_header readme _trailer
readme_use dvi tex generator generator_header

® those used to generate configuration files for MSVisualC++:

dsp_windows_header dsw_all_project dsw_all_project_dependency
dsw_all_project_header dsw_all_project_trailer dsw_header dsw_project
dsw_trailer dsp_all dsp_application_header dsp_contents
dsp_library_header dsp_shared_library _header dsp_trailer

Language fragments should provide two forms, one for the applications (in which case
they are named exactly after the language name eg c, cpp, fortran) and the other for the
libraries (in which case they have thérary suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++, Fortran, Java, Lex, Yacc) is
provided by CMT itself but it is expected that projects add new languages according to
their needs. Event if the make fragment meant to be the implementation of a language
support is declared, the language support itself must be declared too, using the
languagestatement

All make fragments are provided as (suffixless) files which must be located in the
fragments sub-directory inside the cmt/mgr branch of one package. They must also be
declared in the requirements file (through tingke fragmentstatement) so as to be
visible.

A package declaring, and implementing a make fragment may override a fragment of
the same name when it is already declared by a used package. This implies in particular
that any packageay freely override any make fragment provided@MT itself

(although in this case a deep understanding of what the original fragment does is
recommended).

Makefile fragments may take any form convenient to the document style, and some
special pre-built templates (see #pendi) can be used in their body to represent
running values, meant to be properly expanded at actual generatian time

43

CONSTITUENT | the constituent name

FULLNAME the full source path

FILENAME the source file name without its path

NAME the source file name without its path and suffix

FILESUFFIX the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

12.2.15 public, private

Introduce a section fgrublic or private symbols (meant to be implemented as

environment variables or aliases iaix environment or akgical namesor symbols

in aVMS one).Macrosto be used within makefiles can also be defined at this level.
Public symbols are meant to be exported to any external user of the package whereas
private ones are only defined for the packdgeelopperCurrently the selection

between these two categories is done when the setup script is executed : if it is executed
while actually being in themt branch of the package, the developper category is
assumed. If the script is executed from another directory the user categgssynsed.

12.2.16-tag

Provide taglefinitions.

A tag is a token which can be used to select particular values of symbols. Generally a
tag need not being explicitly declared, since the reference to it will declare the tag
automatically. However, tags may be useddamea particular association of several
other tags. In this case, this association must be declared witdnieementdile as
follows :

tag <association-tag-name> <tagl> <tag2> ...

eg:

tag Linux-gcc Linux gcc

This definition implies that whehinux-gccis true, then bothinux andgccaretrue.

This can be exploited to trigger via only one tag, the activation of several individual
tags, each signing a particular condition (in our exampleebegcondition and the
Linux environment).

However, it is always possible to dynamically associate several tags by using the
tag-list-style of arguments to the -tag=<tag-list> options to the cmt command driver
(such as itmt setuptag=Linux,debuyy

44

Tags or associations of tags are propagated using the -tag=<tag-list> options to the cmt
command driver, but the Make command can also accept them through the
conventional macro$(tag) and$(extra_tags)However, theé(tag) macro itself can

only accept one value (instead of a list), and therefore in order to give a list of
additional tags, one should use $fextra_tags)such as igmake tag=Linux
extra_tags=debuy

Finally, running the setup script (through gmurcesetup.[c]shor call setup.bat
command) can also receive tag specifications usingdbetag-listoptions.

12.3- The generalcmt userinterface

This utility (a shell script combined with@application) provides a centralised access to
various commands to teMT system. The first way to usent is to run it without
argument, this will print a minimal help text showing the basic commands and their syntax :

45

> cmt command [option...]
command :
broadcast [-select=list] [-exclude=list] [-local] [-depth=n]
[-global] [-begin=pattern]
[-all_packages] <command> : apply a command to [some of] the used packages
build <key> : build various components :
constituent_makefile : generate Makefile
constituents_makefile : generate constituents.make

dependencies : generate dependencies

library_links : build symbolic links towards all imported libraries
make_setup : build a compiled version of setup scripts
msdev : generate MSDEYV files

0s9_makefile : generate Makefile for OS9

prototype : generate prototype file

readme : generate README.html

tag_makefile : generate tag specific Makefile

check <key> : perform various checks
configuration : check configuration
files <old> <new> : compare two files and overrides <old> by <new> if different
version <name> : check if a name follows a version tag syntax

check_files <old> <new> : compare two files and overrides <old> by <new> if different

checkout : perform a cvs checkout over a CMT package

co : perform a cvs checkout over a CMT package

cleanup [-csh|-sh|-bat] : generate a cleanup script

config : generate setup and cleanup scripts

create <package> <version> [<path>] : create and configure a new package
filter <in> <out> filter a file against CMT macros and env. variables
help : display this help

lock : lock the current package

lock <package> <version> [<path>] : lock a package
remove <package> <version> [<path>] : remove a version of a package
remove library_links : remove symbolic links towards all imported libraries

run <command> : apply a command
setup [-csh|-sh|-bat] : generate a setup script
show <key> : display various infos on :
all_tags : all defined tags
applied_patterns : all applied patterns in this package
author : package author
branches : added branches
clients . package clients
constituent_names : constituent names
constituents : constituent definitions
uses : the use tree
fragment <name> : one fragment definition
fragments : fragment definitions
groups : group definitions
languages : language definitions
macro <name> : aformatted macro definition
macro_value <name> : araw macro definition
macros : all macro definitions
manager : package manager
packages : packages reachable from the current context
path : the package search list
pattern <name> : the pattern definition and usages
patterns : the pattern definitions
pwd : filtered current directory
set_value <name> : araw set definition
set <name> : aformatted set definition
sets : set definitions
strategies : all strategies (build & version)
tags : all active tags
uses : used packages
version : version of the current package

versions <name> : visible versions of the selected package

system : display the system tag

unlock : unlock the current package

unlock <package> <version> [<path>] : unlock a package
version : version of CMT

cvstags <module> : display the CVS tags for a module
cvsbranches <module> : display the subdirectories for a module
cvssubpackagess <module> : display the subpackages for a module

global option :
-quiet : don't print errors
-use=<p>:<v>:<path> : set package version path
-pack=<package> : set package
-version=<version> : set version
-path=<path> : set root path
-f=<requirement-file> : setinput file
-e=<statement> : add a one line statement
-home=<directory> : find a home requirements file there
-tag=<tag-list> : select specific tag(s)

46

The following sections present the detail of each available command.

12.3.1- cmt broadcast [-select=list] [-exclude=list] [-local]
[-global] [-begin=pattern] [-depth=<n>] [-all packages] <shell
command>

This command tries to repeatedly execute a shell command in the context of each of the
used package of the current package. The used packages are listed usirtgstioav
usescommand, which also indicates in which order the broadcast is performed. When
theall_packagesoption, the set of packages reached by the broadcast is rather the
same as the one shown by timet showpackagescommand, ie alCMT packages and
versions available throught the curr@WTPATH list.

Typical uses of thibroadcastoperation coulde:

csh> cmt broadcast cmt config
csh> cmt broadcast - gmake
csh> cmt broadcast '(cd ../; cvs -n update)’

The loop over used packages will stop at the first error occurence in the application of
the command, except if the command was preceded by a -’ (minus) sign (similarly to
the makeconvention).

It is possible to specify a list of selection or exclusion criteria set onto the package path,
using the following options, right after theoadcastkeyword. These selection criteria
may be combined (eg one may combineltéginandselectmodifiers)

sh> cmt broadcast
sh> cmt broadcast
sh> cmt broadcast
sh> cmt broadcast
sh> cmt broadcast
sh> cmt broadcast
sh> cmt broadcast

-begin=Cm gmake
-select=Cm gmake
-select="/Cm/ /CSet/’ gmake
-select=Cm -exclude=Cmo gmake (4)
-local gmake (5)
-depth=<n> gmake
-all_packages gmake

1)
)
®)

(6)
@)

According to the option, the loop will only operateto:

1. the first package which path contains the stfidm" , and then all other reachable
packages (in case other specifiers are used)

. the packages which path contains the stiigp"

. the packages which path contains either the stHig/" or the strind/CSet/"

4. the packages which path contains the stt@m" , but which does not contain the
string"Cmo"

. the packages at the same level as the current package

6. the packages at the same level as the current package or among the <n> first ¢ntries

in theCMTPATH list
7. all the packages and versions currently available througBNMIEPATH list

w N

ol

47

12.3.2- cmt build <option>

All build commands are generally meant to change the current package (some file or
set of files is generated). Therefore a check against conflicting locks (ie. a lock owned
by another user) is performed by all these commands prior to execute

® [-nmake] constituent_makefile<constituent-name

This command is internally used BT in the standard Makefile.header
fragment. It generates a specific makefile fragment (named
<constituent-namremake) which is used to re-build this fragment.

All such constituent fragments are automatically included from the main Makefile.

Although this command is meant to be used internally (and transparently) by
CMT when the make command is run, a developer may find useful in very rare
cases to manually re-generate the constituent fragment, usigiisand.

The-nmake option (which must precede the command) provides exactly the same
features but in a Windows/nmake context. In this case, all generated makefiles are
suffixed by.nmake instead ofmake for Unix environments. The main makefile

is expected to be namétMake and the standard header is named
NMakefile.header

® [-nmake] constituents_makefile

This command is internally (and transparently) use@kM in the standard
Makefile.header fragment, and when the make command is run, to generate a
specialized make fragment containing all "cmt build constituent_makefile"
commands for a given package.

The-nmake option (which must precede the command) provides exactly the same
feature but in a Windows/nmake context. In this case, all generated makefiles are
suffixed by.nmake instead ofmake for Unix environments. The main makefile

is expected to be namé&tMake and the standard header is named
NMakefile.header

® dependencies

This command is internally (and transparently) use@lM from the constituent
specific fragment, and when the make command is run, to generate a fragment
containing the dependencies required by a source file.

This fragment contains a set of macro definitions (one per constituent source file),
each containing the set of found dependencies.

® |library links

This command builds a local symbolic link towards all exported libraries from the
used packages. A package exports its libraries througiptiekages _libraries
macro which should contain the list of constituent names corresponding to

48

libraries that must bexported.

library Foo ...
library Foo-utils ...

macro Foo_libraries "Foo Foo-utils"

The correspondingmt removelibrary _links command will remove all these
links.
make_setup

This command is internally (and transparently) use@kl from the standard
Makefile.header fragment, and when the make command is run, to generate
another fragment containing all platform (or tag) specific macro definitions.

One copy of this fragment (named <tag>.make) is created per flavour of tag used
at build time. The tag considered in this operation is either the default tag value
(obtained from the CMTCONFIG environment variable) or specified to the make
command using the -tag=<tag> option)

This tag specific fragment represents the actual context that was considered at the
most recent make activation. It is automatically rebuilt when one of the used
requirementss modified.

msdev

This command generates workspace (.dsw) and project (.dsp) files required for the
MSDev tool.

0s9_makefile

This command generates external dedicatakefilefragments for each
individual component of the package (ie. libraries or executable applications) to be
used in OS9 context. It generates specific syntaxes f@®®operatingsystems.

The output of this tool is a set of files (hamed with the components’ name and
suffixed by.os9maké that are meant to becludedwithin the mainMakefile
that the developer has to wrdaeyhow.

The syntax of themt build 0s9_makefileutility is as follows :

sh> cmt build 0s9_makefile <package>

prototype <source-file-name>

This command is internally (and transparently) use@lM from the constituent
specific fragment, and when the make command is run, to generate prototype
header files from C source files.

49

The prototype header files (named <file-name>.ph) will contain prototype
definitions for every global entry point defined in the corresponding C source file.

The effective activation of this feature is controled by the build strateGWaf.
The build strategy may be freely and globally overridden fronreaqyirements
file, using thebuild_strategy cmt statement, providing either the "prototypes" or
the "no_prototypes" values.

In addition, any constituent may locally override this strategy using the
"-prototypes" or "-no_prototypes" modifiers.

® readme

This command generates a README.html file into the cmt branch of the
referenced package. This html file will include

O atable containing URLSs to equivalent pages for all used packages,
O a copy of the local README file (if it exists).
® tag_makefile

This command produces onto the standard output, the exhaustive list of all macros
controled byCMT , ie. those defined in the requirements files as well as the
standard macros internally built BMT , taking into account all usquhckages.

12.3.3- cmt checkconfiguration

This command reads the hierarchy of requirements files referenced by a package, check
them, and signals syntax errors, version conflicts or other configuration problems.

An empty output means that everything is fine.

12.3.4- cmt check files <reference-file<new-file>

This command compares the reference file to the new file, and substitues the reference
file by the new one if they are different.

If substitution is performed, a copy (with additional extensiaw) is produced.

12.3.5- cmt checkout...

See thgaragraplon how to use cvs together wittMT , and more specifically the
details oncheckoutprations

50

12.3.6-cmt co...

This is simply a short cut to thoent checkoutcommand.

12.3.7- cmt cleanup[-cshl-sh]

This command generates (to the standard output) a set of shell commands (either for
csh or sh shell families) meant to unset all environment variables specified in the
requirementdiles of the used packages.

This command is internally used in the cleanup.[c]sh shell script, itself generated by the
cmt config command.

12.3.8- cmt config

This command (re-)generates the setup scripts and the manimal Makefile (when it does
not exist yet or have beéwost).

csh> cd ~/Packages/Foo/vl/cmt
csh> cmt config

To be properly operated, one mageadybe in thecmt or mgr branch of a package
(where theequirementdile can befound).

This command also performs some cleanup operations (eg. removing all makefile
fragments previously generated). Generally speaking, one may say that this command
restores the CMT-related files to their original state (ie before any document
generation)

The situations in which it is useful to run this commanst

When the setup or cleanup scripts have been lost

When the minimal Makefile have been lost

When the version dEMT is changed

After restoring a package from CVS

After having manually changed the directory structure of a package (using a
manual copy operation, or renaming one of its parent directory, such as the
version directory)

12.3.9- cmt create <package> <versionj{<area>]

This command creates a new package or a hew versiopagkage

csh> cmt create Foo v1

51

or:

csh> cmt create Foo vl ~/dev

In the first mode (ie. without thereaargument) the package will be created in the
defaultpath.

The second mode explicitly provides an altermeti.
A minimal configuration is installed for this nggackage:

An src and arcmt branch
A very minimal requirements file
The setup and cleanup shell scripts

°
°
°
® The minimal Makefile

12.3.10- cmt filter <in-file> <out-file>

This command reads <in-file>, substitutes all occurences of macro references (taking
either the forn$(macro-name or ${macro-namé) by values deduced from
corresponding macro specifications found inrbguirementdiles, and writes the

result into <out-file>.

This mechanism is widely internally used ®MT , especially for instanciating make
fragments. Then, users may use it for any kind of document, including maual
generation of MSDev configuration files, etc...

12.3.11- cmt help

This command shows the list of options of tnet driver.

12.3.12- cmt lock
cmt lock [<package> <version> [<area>]

This command tries to set a lock onto the current package (or onto the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then install a small text file naméxtk.cmt into thecmt/mgr branch of the
package, containing the following text:

locked by <user-name> date <now>

52

3. Run a shell command described in the macro ndaskd commandmeant to
install physical locks onto all files for this version of this package. A typical
definition for this macro could be:

macro lock_command "chmod -R a-w ../*"\
WIN32 "attrib /S /D +R ../*"

12.3.13- cmt remove <package> <versionj{<area>]

This command removes one version of the specified package. If the package does not
contain a conflicting lock, and if the user is granted enough access rights to remove
files, all files below the version directory will be definitively removed. Therefore this
command should be used with as much care as possible.

The arguments needed to reach the package version to be removed are the same as the
ones whic had been used to create

If the removed version is the last version of this package, (and only if its directory is
really empty) the package directory itself will theleted.

12.3.14- cmt removelibrary _links

This command removes symbolic links towards all imported libraries which had been
installed using themt build library_links command. This command is generally
transparently executed when one rgnskeclean

12.3.15 cmt run shell-command
This command runs any shell command, in the context of the current package.

This may not appear to be very useful for the current package one is working on, but
when combined with global optiorgack=package-version=version
-path=access-paththis gives a direct access to any package context.

12.3.16- cmt setup[-csh|-sh|-bat]

This command generates (to the standard output) a set of shell commands (either for
csh, sh or bat shell families) meant to set all environment variables specified in the
requirementdiles of the used packages.

This command is internally used in the setup.[c]sh or setup.bat shell script, itself
generated by themt config command.

53

12.3.17- cmt show<option>

all_tags

This command displays all currently defined tags, even when not cuaetivg
applied_patterns

This command displays all patterns actually applied in the cuysesiage

author
branches
clients <package> [<version}

This command displays all packages that express an exjglastatement onto
the specified package. If no version is specified on the argument list, then all uses
of that package amisplayed.

constituent_names
constituents

uses

fragment <name>

This command displays the actual location where the specified make fragment is
currently found byCMT , taking into account possible overridddgfinitions.

fragments
groups

This command displays all groups possibly defined in constituents of the current
package (using th@roup=<group-name> option).

languages
macro <name>

This command displays a quite detailed explanation on the value assigned to the
macro specified as the additional argument. It presents in particular each
intermediate assignments made to this macro by the hierarchy of used statements,
as well as the final result of these assignment operations.

By adding atag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuration is defined.

macro_value<name>

This command displays the raw value assigned to the macro specified as the
additional argument. It only presents the final result of the assignment operations
performed by used packages.

54

By adding atag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without actually going to a
machine or an operating system where this configuratidefised.

The typical usage of thehowmacro_valuecommand is to get at the shell level
(rather than within &akefile) the value of a macro definition, providing means
of accessing them (quite similarly to an environment variable) :

csh> set compiler=‘cmt show macro_value cppcomp’
csh> ${compiler}

macros

This command extracts from theguirements file(s) the complete set of macro
definitions, selects the appropridte definition (or uses the one provided in the
-tag=<tag>option) and displays the effective macro values corresponding to this
tag.

This command is typically used to show the effective list of macros used when
running make and can be also used to build, as an argument list, the make
command as follows :

csh> eval make ‘cmt show macros’

This use otmt showmacrosis directly installed within the default target

provided in the standaidakefile.headerfile. Therefore if this file is included

into the package’Makefile, macro definitions provided in thequirementdiles

(the one of the currently built package as well as the ones of the used packages)
will be expanded and provided as arguments to make.

By adding atag=<tag> option to this command, it is possible to simulate the
behaviour of this command in another context, without atcually going to a
machine or an operating system where this configuration is defined.

manager
packages

This command displays all packages (and all versions of them) currently reachable
through the currerdaccespathdefinition (which can be displayed using tiraet
showpath command).

path

This command displays the complete and effe@n@espathcurrently defined
using any possible alternatey.

pattern <name>

55

This command displays how and where the specified pattern is defined, and which
packages do apply it.
patterns

This command displays all pattern definitions.
pwd

This command displays a filtered version of the stangeudi unix command. The
applied filter takes into account the set of aliases installed in the standard
configuration file located iS{CMTROOT}/mgr/cmt_mount_filter .

This configuration file contains a set of path aliases (one per line) each proposing
a translation for non-portable file paths (imposed by mount constraints on some
contexts).

set_value<name>
set<name>

sets

strategies

tags

This command displays all currentgtivetags, and what part of the
configuration actually activateeem

uses

This command displays a quite comprehensive and detailed explanation of the
hierarchy of use statements, with the effective selection made between possibly
compatible versions.

use CMT v1r12 /lal
use Cm v7r5

use CSet v2rb

#

Selection :

use CSet v2r5 /lal
use Cm v7r5 /lal

use CMT v1ri2 /lal

The-quiet option may be used to remove from the output, the comments
(beginning with théf character), so as to display a simple list of used packages,
starting from the deepegses.

version
This command displays the version tag of the cuipankage.
versions<name>

This command displays the reachable versions of the specified package, looking at
the current accesgmths.

56

12.3.18- cmt system

This command displays the current value assigned by default GMAEONFIG
environment variable.

12.3.19- cmt unlock
cmt unlock [<package> <version> [<area>]

This command tries to remove a lock from the current package (or from the specified
package). This consists in the following operations:

1. Check if a conflicting lock is already set onto this package (ie. a lock owned by
another user).

2. If not, then remove the text file namkedtk.cmt from thecmt/mgr branch of the
package.

3. Run a shell command described in the macro namkxtk_commandmeant to
remove physical locks from all files for this version of this package. A typical
definition for this macro could be:

macro unlock_command "chmod -R g+w ../*"\
WIN32 “attrib /S /D -R ../*"

12.3.20- cmt version

This command shows the current veriorCMT , including (if applicable) the actual
patch level. This always corresponds to the corresponding CVS tag assi@id to
sources.

12.3.21- cmt cvstags<module>

(see the section dmow tu useCVStogether withCMT for more details on this
command)

12.3.22- cmt cvsbranches<module>

12.3.23- cmt cvssubpackagesmodule>

57

12.4- The setup and cleanuyscripts

They are produced by tleent config command and their contents is built according to the
specifications stored in threquirements file.

One flavour of these scripts is generated per shell fgigsly sh andbat), yielding the
following scripts:

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

The main sections installed within a setup script are :

1. Connection to the current version of BMT package.

2. Setting the set of user defined public variables specified irethérementdile
(including those defined by all used packages). This is achieved by runnimtthe
setup utility into a temporary file and running this temporary file.

3. Activation of the user defined setup and cleanup scripts (those specified using the
setup_scriptandcleanup_scriptstatements).

It should be noted that these setup scriptaa@ontain machine specific information (due

to the online use of themt setupcommand). Therefore, it is perfectly possible to use the
same setup script on various platforms (as soon as they share the directories) and this also
shows that the configuration operation (tinet config command) is required only once for

a set of multiple platforms sharing a development area.

12.5- cmt build prototype

This command is only provided for developmen€ahodules. It generateaheader file
containing the set of prototype statements for all public functions of a given module. Its
output is a file with the same name as the input source (given as the argument) and suffixed
with .ph.

The generated prototype header file is meant to be included whereever it is needed (in the
module file itself for instance).

A typical example of the use omt build prototype could be :

csh>cd ../src
csh> cmt build prototype FooA.c
Building FooA.ph

Runningcmt build prototype will only produce a new prototype header file if the output is
actually different from the existing one (if it exists) in order to avoid confusiakechecks.

58

The effective use of this facility (which may not be appropriate in all projects) is controlled
by one option of the build strategy, which can take one of thedues:

build_strategy prototypes
build_strategy no_prototypes

In addition to this global strategy specification, each application or library may individually
override it using theprototypes or -no_prototypesoptions.

Lastly, the actual behaviour of the prototype generator is defined in the standard make
macrobuild_prototype (which default to call themt build prototype command, allowing
a user defined behavious to tfesiture)

13- Using cvstogether with CMT

Nothing special is apriori required IBMT with respect to the use GVS. Nevertheless, one
may advertize some well tested conventions and practices which turned out to ensure a good
level of consistency between the two utilities.

Although none of these are required, th& general command provides a few utilities so as to
simplify the use of these practices. It should be noted that the added features provided by cmt rely
on the possibility tmueryCVS about the existinGMT packages and the possible tags setup for
these packages. CVS does not by default permit such query operations (since they require to scan
the physical CVS repository). Therefd@MT provides a hook to CVS (based upon standard

CVS features - not patches) for this. This hook can be installed by the following procedure (see
sections below for moraetails):

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

13.1- Importing a package into acvsrepository

Generally, everything composing a package (belowénsiondirectory and besides the

binary directories) is relevant to be imported. Then choosiegganodulename is generally

done on the basis of the package name. Taking the previous examples, one could import the
Foo package as follows :

csh> cd/[Foolvl
csh> cvs import -m "First import" -1 alpha -1 hp9000s700 Foo LAL v1

In this example,

® we have ignored the currently existing binary directories (fiptea andhp9000s70)
e thecvsmodule name is identical to the package néroe)
e the original symbolic insertion tag is identical to the version identiity
The choice of the module name can generally be identical to the package name. However,

59

some site specific management issues may lead to different choices (typically, a top
directory where groups of packages are gathered may be inserted).

Conversely, using symbolic tags identical to version identifiers appears to be a very good
practice. The only constraint induceddusis that the symbolic tags may not contdat
characterg'.’), whereas no restriction exist fra@MT itself. Thus version identifiers like
v3r2 will be preferred to the3.2form.

13.2- Checking a package out from avsrepository

Assuming the previous conventions on module name and version identifier have been
selected when importing a package, the following operations will naturally intervene when
one need to check a package out (typically to work on it or to install it on some platform) :

csh> cd <some root> (2)
csh> mkdir Foo 2
csh> cd Foo

csh> cvs checkout -d vl Foo (3)
csh> cd vl/cmt

csh> cmt config 4
csh> source setup.csh (5)
csh> [g]make (6)

1. one always have to select a root directory where to settle down this copy of the
extracted package. This may either be the so-cd#éaliltroot or any other
appropriate directory. In both cases, the mext config operation will automatically
take care of this effective location.

2. creating a base directory with the package name is mandatory herenatidken
into account byvsduring thechaeckoubperation since one wants to insert the
versionbranch in between.

3. the package is checked out into a directory named with the expected version identifier
exactly corresponding to the version currently stored im¥keepository.

4. then using themt config command (from themt branch) will update the setup
scripts against theequirements file and the effective current package location.

5. using this updated version of the setup script provides the appropriate set of
environment variables

6. lastly, rebuilding the entire package is possible simply usinfgjiheake command.

The actions decribed just above (from number 2 to number 4 included) can also be
performed using themt checkoutcommand.

60

> cd <some work area>
> cmt checkout [modifier ...] <package> ...

modifier :

-l Do not process used packages (default).

-R Process used packages recursively.

-rrev Check out version tag. (is sticky)

-d dir Check out into dir instead of module name.
-0 offset Offset in the CVS repository

-n Simulation mode on

-v Verbose mode on

-help Print this help

Thus the previous example would become:

csh> cd <some root>
csh> cmt checkout Foo
csh> cd Foo/vl/cmt
csh> source setup.csh
csh> [g]make

13.3- Querying CVS about some importantinfos

It is possible, using the commands :

® cmt cvstags<module>

® cmt cvsbranches<module>

® cmt cvssubpackagesmodule>
to query theCVS repository about the existing tags installed onto a g8&8 module, the
subdirectories and the subpackages (ifAhE meaning, i.e. whenm@quirements file
exists).

> cmt cvstags Cm

V7r6 v7r5 v7rd v7r3 virl v7
> cmt cvstags Co

v3r7 v3r6 v3

One should notice here that thestagscommand can give informations about any type of
module, even if it is not managed in @MT environment.

However, in order to let this mechanism operate, it is required to install some elements into
the physicalCVS repository(which may require some access rights itoThis

installation procedure (to be done only once in the life of the repositiory) can be achieved
through the followingcommand:

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

61

However, the details of the procedure is listed below (this section is preferably reserved for
system managers and can easily be skipped by stamskzng):

1. copy thecmt_buildcvsinfos2.shshell script into the management directory
${CVSROOT}CVSROOT as follows :

sh> cp ${CMTROOT}/mgr/cmt_buildcvsinfos2.sh ${CVSROOT}/CVSROOT

2. install one special statement in fbginfo administrative file as follows :

sh>cd ...

sh> cvs checkout CVSROOT
sh>cd CVSROOT

sh> vi loginfo

.cmtecvsinfos $CVSROOT/CVSROOT/cmt_buildcvsinfos2.sh
sh> cvs commit -m "set up commitinfo for CMT"

13.4- Working on a package, creating a newelease

This section presents the way to instanciate a new release of a given package, which
happens when the foreseen modifications will yield additions or changes to the application
programming interface of the package.

Then the version tag is supposed to be moved forward, either increasing its minor identifier
(in case of simple additions) or its major identifier (in case of changes).

The following actions should be undertaken then :

1. understand what is the latest version tag (typically by usingntihevstagscommand).
Let’s call itold-tag.

2. select (according to the foreseen amount of changes) what will be the next version tag.
Let's call itnew-tag

3. check the most recent version of the package in your development area :

sh> cd <development area>
sh> cvs checkout -d <new-tag> <package>

4. configure this new release, and rebuild it :

sh> cd <new-tag>/cmt
sh> cmt config

sh> source setup.csh
sh> [g]make

62

13.5- Getting a particular tagged version out ofcvs

The previous example presented the standard case where one geisttheentversion of

a given package. The procedure is only slightly modified when one wants to extract a
previously tagged version. Let's imagine that Ho® package has evolved by several
iterations, leading to several tagged releases invbieepository (say2 andv3). If thev2

release is to be used (e.g. for understanding and fixing a problem discovered in the running
version) one will operate as follows :

csh> cd <some root>

csh> mkdir Foo

csh> cd Foo

csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt

csh> cmt config

csh> source setup.csh

csh> make

14 - Interfacing an external package withCMT

Very often, external packages (typically commercial products, or third party software) are to be
used by packages developped in the context dEM& environment. Although this can

obviously done simply by specifying compiler or linker options internally to the client packages,
it can be quite powerful to interface these so-cadledrnalpackages t&€MT by defining aglue
package, where configuration specifications for this external package are detailed.

Using this approach, one may :

e provide anicknamefor this external package,
® adapt the version tag convention consistently to the project, hiding the version tag
specificities of eg. commercial packages.
® provide compiler options using the the standard make mapaxskage>_cflags
<package>_cppflagor <package>_fflags
® specify a set of search paths for the include files, usingpthede dirs statement,
® provide linker options using the the standard make magraskage>_linkopts
Let's consider the example of tEPACS package. This package is provided outside of the
CMT environment. Providing a directory tree following tBEIT conventions (ie. a branch
named after the version identifier, thencamt branch) then gequirements file, containing
(among other statements not shown for the sake of clarity) :

63

package OPACS

include_dirs ${Wo_root}/include ${Co_root}/include ${Xx_root}/include \
${Ho_root}/include ${Go_root}/include ${Xo_root}/include

public
macro OPACS_cflags ~ "-DHAS_XO -DHAS_XM"
macro OPACS_cppflags " $(OPACS_cflags) "

macro OPACS_linkopts "$(Wo_linkopts) $(Xo_linkopts) $(Go_linkopts) \
$(Glo_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(Htmlo_linkopts) \
$(W3o_linkopts) $(Co_linkopts) $(X_linkopts)"

Then every package or application, client of DBACS package would have just to provide a
use statement like :

use OPACS v3

This procedure gives the complete benefit of the use relationships between packages (a client
application transparently inherits all configuration specifications) while keeping unchanged the
original referenced package, allowing to apply this approach even to commercial products so that
they may be integrated in resource usage surveys similarly to local packages.

15- Installing CMT for the first time

These sections are of interest onlZMT is not yet installed on your site, of if you need a
private installation.

The first question you need to answer is the location where to i@84dll. This location is
typically a disk area where most of packages managed in your project will be located.

Then, you have to fetch the distribution kit from the Weltigt//www.lal.in2p3.fr/SI/CMT

You must get at least the primary distribution kit containing the basic configuration information
and theCMT sources. This operation results in a set of directories hanging bel@Wtheoot

and the version directory. The src branch contains the sour€™f the fragments branch
contains the makefile fragments and the mgr branch contains the scripts needed to build or
operateCMT .

15.1- Installing CMT on your Unix site

The very first operation after dowloadi@MT consists in running the INSTALL shell
script. This will build the setup scripts required by &MT user.

Then you may either decide to bulliMT by yourself or fetch a pre-built binary from the
same Web location. The prebuilt binary versions may not exist for the actual platform you
are working on. You will see on the distribution page the precise configurations used for
building those binaries.

64

http://www.lal.in2p3.fr/SI/CMT

In case you have to buildMT yourself, you need a C++ compiler capable of handling
templates (although the support for STL is not required). There is a Makefile provided in the
distribution kit which takes g++ by default as the compiler. If you need a specific C++
compiler you will override the cpp macro as follows:

sh> gmake cpp=CC

Thecppflagsmacro can also be used to override the behaviour of the compilation.

Another important concern is the waT will identify the platform.CMT builds a
configuration tag per each type of platform, and uses this tag for naming the directory where
all binary files will be stored. As such this tag has to be defined prior to everCiiiid

itself.

CMT builds the default configuration by running the cmt_system.sh script found in the mgr
branch ofCMT . Run it manually to see what is the default value provided by this script.
You might consider changing its algorithm for your own convenience.

A distribution kit may be obtained at the following URL :

http://www.cmtsite.org

Once thdar file has been downloaded, the following operations must be achieved :

1. Select a root directory where to inst@WT . Typically this will correspond to a
development area or a public distribution area.

Import the distribution kit mentioned above.

Uncompress and untar it.

ConfigureCMT .

CMT is ready to be used for developing packages.

akrown

A typical corresponding session could look like :

csh> cd /Packages

csh> <get the tar file from the Web>
csh> uncompress CMTv1rl2.tar.Z
csh> tar xvf CMTv1rl2.tar

csh> cd CMT/v1rl2/mgr

csh> /INSTALL

csh> source setup.csh

csh> gmake

15.2- Installing CMT on a Windows or Windows NT site

You first have to fetch the distribution kit from the Welhtip://www.cmtsite.orgYou
must get at least the primary distribution kit containing the basic configuration information
and theCMT sources. This operation results in a set of directories hanging bel@\ithe

65

http://www.cmtsite.org/

root and the version directory. The binary kit provided for Windows environments will
generally fit your needs.

You should consider getting the pre-compiled (for a Windows environment) applications,
and especially the\VisualCl\install.exeapplication, which interactively configures the
registry entries as described in the reatagraph.

The next operation consists in defining a few registries (typically using the standard RegEdit
facility or theinstall.exe special application):

e HKEY_LOCAL_MACHINE/Software/CMT/root will contain the root directory where
CMT is installed (eg. "e:").

e HKEY_ LOCAL_MACHINE/Software/CMT/version will contain the current version
tag of CMT ("v1r12" for this version).

e HKEY LOCAL_MACHINE/Software/CMT/path/ may optionally contain a set of text
values corresponding to the different package global access paths.

e HKEY_ LOCAL_ MACHINE/Software/CMT/site will contain the conventional site
name.

e HKEY_CURRENT_USER/Software/CMT/path/ may contain a set of text of text
values corresponding to the different package private access paths.

CMT can also be configured to run on DOS-based environments using#ke facility.
In this case, the installation procedure is very similar to the ahméx

A typical corresponding session could look like :

dos> cd Packages

dos> <get the tar file from the Web>
dos> cd CMT\v1r12\mgr

dos> call INSTALL

dos> call setup.bat

dos> nmake /f nmake

16 - Differences with previous versions oCMT

16.1- Converting a package that was managed with
previous versions of CMT (ormethods)

The primary source of information handled®WT , i.e. the syntax - and semantics - of the
requirements file is supposed to be maintained backward compatible across previous
versions ofCMT . Therefore we expect that the effects of using a new versioMaf to a
package already managed by previous versio@MF , will remain limited.

Generally, it is enough to just-configurethe package, using the well known command

66

sh> cmt config

This will result in re-generating theetup scripts, and verifyinglakefile. It will also
remove all existing makefile fragments previously generated\y . One should also
check that a prop€&MT -compliantMakefile should contain at least the two following
lines:

include ${CMTROOT}/src/Makefile.header

include ${CMTROOT}/src/constituents.make

These two lines are the only required lines to be present in an operktakedile.
However, the user is entirely free to install additional make statements at any location for
his/her own purpose.

No further operation is then needed. All othekefile fragments will be automatically
re-generated at make time.

Sometimes, it might also be useful to clean the binary directories and rebuild the package as
follows:

sh> gmake clean
sh> gmake

Lastly, it's often useful to broadcast these actions (and primarilgniheonfig action)
towards all used packages at once. This of course can easily be done thramgth the
broadcastcommand afollows:

sh> cmt broadcast cmt config

16.2- Operations in a Windowsenvironment

A graphical and interactive applicatigemtw) is provided on Windows (95/98/NT)
environments. This application let the developer browse the package directories, select any
version of any package. Its configuration is shown, and interactive edition is possible on its
requirementsdile. A few operations are also possible, such as the generation of MSDev
configuration files, so as to directly work with packages manag&iMly within the

MSDev development environment. Currently this support is still evolving and user might

see limitations in the dialog betwe€MT and MSDev (only the constituent definitions -
applications and libraries - and the use mechanism - package relationships - are understood
in the context of MSDevV). Users of these new facilities are kindly invited to send their
comments, bug observations, suggestions or even contributions to the author.

67

17 - Appendi

ces

17.1- Standard make targets predefined ilCMT

These targets can always be listed through the following command :

sh> gmake help

target usage
help Get the list of possible make target for this package.
all build all components of this package.
clean remove everything that can be rebuilt by make
configclean remove all intermediate makefile fragments
check run all applications defined with the -check option

component-nam

only build this particular component (as opposed tathtarget that tries tq
Souild all components of this package)

group-name

build all constituents belonging to this group (ie. those defined using th
same -group= option)

D

These targets have to be specified as follows :

sh> gmake clean
sh> gmake Foo

17.2- Standard macros predefined inCMT

17.2.1- Structural macros

These macros

describe the structural conventions follow&My. They receive a

conventional default value from ti@MT requirements file. However, they can be
overridden in any package for its own needs.

68

macro usage defaultvalue

tag gives the binaryag ${CMTCONFIG}
src the srcbranch ..Isrc/

inc the includebranch ..Isrc/

mgr the cmt or mgbranch ..Jcmt/ or../mgr/

bin the branch fobinaries I/${CMTCONFIG}/

javabin | the branch for javalasses ../classes/

doc the docbranch ..Idoc/

17.2.2- Language relatedmacros

These macros are purely conventional. They are expected in the various make
fragments available fro@MT itself for providing the various building actions.

During the mechanism of new language declaration and definition available in the
CMT syntax, developers are expected to define similar conventions for corresponding
actions.

Their default values are originally defined inside ribguirementdile of theCMT
package itself but can edefinedby providing a new definition in the package’s
requirements file using theacro statement. The original definition can dmmpleted
using themacro_appendor macro_prependstatements.

cc The Ccompiler cc

ccomp | The C compilingcommand | $(cc) -c -I$(inc) $(includes(cflags)

clink The C linkingcommand (cc)(clinkflags)

cflags The C compilatiorflags none

pp_cflags| The preprocessor flags f@r| none

clinkflags | The C linkflags none

cpp The C++compiler g++

cppcomp The C++ compilingcommand | $(cpp) -¢ -1$(inc) $(includes)b(cppflags)

cpplink The C++ linkingcommand $(cpp) $(cpplinkflags)

cppflags The C++ compilatiorilags none

pp_cppflags| The preprocessor flags f@++ | none

cpplinkflags | The C++ linkflags none

69

for The Fortrarcompiler fr7

fcomp The Fortran compilingommand $(for) -c -1$(inc) $(includes)$(fflags)

flink The Fortran linkinggommand $(for) $(clinkflags)
fflags The Fortran compilatioflags none
pp_fflags | The preprocessor flags ftartran none
flinkflags | The Fortran linklags none

ppcmd | The include file command fd¥ortran| -

javacomp | The java compilingommand javac

jar The java archivecommand | jar

lex The Lexcommand | lex $(lexflags)
lexflags | The Lexflags none

yacc The Yacccommand | yacc$(yaccflags)
yaccflags| The Yaccflags none

ar The archivecommand ar -clr

ranlib The ranlibcommand | ranlib

17.2.3- Package customizingnacros

These macros do not receive default values. They are all prefixed by the package name.
They are meant to provide specific variant to the corresponding generic language
related macros.

They are automatically and by default concatenatedMy to fill in the
corresponding globalsemacros (see appendix gaenerateanacro3. However, this
concatenation mechanism is discarded whenrtbeauto_importsoption is specified
in the corresponding ustatement.

The <package>_ native_version is not subject to autormaticatenation.

70

<package_cflags

specific C flags

<packages pp_cflags

specific C preprocessor flags

<package_cppflags

specific C++ flags

<package pp_cppflags

specific C++ preprocessor flags

<package_fflags

specific Fortran flags

<package_pp_fflags

specific Fortran preprocessor flags

<package_libraries

gives the (space separated) list of library names exported by
package. This list is typically used in tbmt build library _links
command.

this

<package_linkopts

provide the linker options required by any application willing {o

access the different libraries offered by the package. This ma
include support for several libraries per package.

A typical example of how to define such a macro could be :

macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -ICm -Im"

y

<package_stamps

may contain a list aftampfile names (or make targets).
Whenever a library is modified, one dedicated stamp file is
re-created, simply to mark the reconstruction date. The namg
this stamp file is conventionalkfibrary>.stamp. Thus, a typical
definition for this macro could be :

macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp”

Then, these stamp file references are accumulated into the
standard macro namede_stampswhich is always installed
within the dependency list for applications, so that whenever
of the libraries used from the hierarchy of used packages cha
the application will be automaticaligbuilt.

p Of

one
\nges,

<package_native_version

specifies the native version of the external package referenc
thisinterfacepackage.

When this macro is provided, its value is displayed bythe
showusescommand

bd by

17.2.4- Constituent specific customizingmacros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each constituent, specific variants to the corresponding generic

language related macros.

71

By convention, they are all prefixed by the constituent name. But macros used for
defining compiler options are in addition prefixed by the constituent category (either

lib_,app_ordoc_

They are used in the various make fragments for fine customization of the build

commancparameters.

<category_<constituent_cflags

specific C flags

<category_<constituent_pp_cflags

specific C preprocessor flags

<category_<constituent_cppflags

specific C++ flags

<category_<constituent_pp_cppflags

specific C++ preprocessor flags

<category_<constituent_fflags

specific Fortran flags

<category_<constituent_pp_fflags

specific Fortran preprocessor flags

<constituentlinkopts

provides additional linker options to the applicatid
It is complementary to - and should not be confu
with - the<package_linkopts macro, which
provides exported linker options required by clier
packages to use the package libraries.

n.
sed

<constituent_shlibflags

provides additional linker options used when

building a shared library. Generally, a simple shared

library does not need any external reference to b
resolved at build time (it is in this case supposed
get its unresolved references from other shared
libraries). However, (typically when one builds a
dynamic loading capable component) it might be
desired to statically link it with other libraries
(making them somewhat private).

S
to

<constituent_dependencies

provides user defined dependency specifications
each constituent. The typical use of this macro is
it with the name of the list of some other
constituents whiclhaveto be rebuilt first (since
each constituent is associated with a target with

same name). This is especially needed when on¢g

want to use the parallel gmake (ie. the -j option o
gmake).

for
fill

174

—h

17.2.5- Source specific customizingnacros

These macros do not receive any default values (ie they are empty by default). They are
meant to provide for each source file, specific variants to the corresponding generic

language related macros.

By convention, they are all prefixed by the source file name followed by the source file

suffix (either_c, _cxx, _f, etc.)

72

They are used in the various make fragments for fine customization of the build
commandoarameters.

<constituent_<suffix>_cflags | specific C flags

<constituent_<suffix>_cppflags| specific C++ flags

U7

<constituent_<suffix>_fflags specific Fortran flag

17.2.6- Generatedmacros
These macros are automaticajgneratedvhenmake is run.

The first set of them provide constant values correspondi@iib based information.
They are not meant to be overridden by the user, since they serve as a communication
mean betwee@MT and theuser.

<PACKAGE>ROOT The access path of the package (including the version branch)

The access path of the package (including the version branch).
This macro is very similar to tePACKAGE>ROOT macro
except that it tries to use a relative path instead of an absolufe
one.

<package_root

<PACKAGE>VERSION | The used version of the package

>

PACKAGE_ROOT The access path of the current package (including the versio

branch)
package The name of the current package
version The version tag of the current package

The second set is deduced from the context and from the requirements file of the
package. They can be overridden by the user so as to custom@d thbehaviour.

The specific configuration tag for the package. By default|it is

<package_tag set to $(tag) but can be freely overridden

The ordered set of constituents declared without any groyp

constituents X
option

The ordered set of all constituents declared using a

<group-name> constituents ~ .
group=<group-name> option

The third set of generated macros aregliobal usemacros They correspond to the
concatenation of the corresponding package specific customizing options that can be
deduced from the ordered setuskstatements found in the requirements file (taking
into account the complete hierarchy of used packages with the exception of those
specified with the

-no_auto_importsoption in their use statement)

73

use_cflags C compiler flags

use_pp_cflags Preprocessor flags for the C language

use_cppflags C++ compiler flags

use_pp_cppflags | Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use_pp_fflags Preprocessor flags for the Fortran language

use_libraries List of library names
use_linkopts Linker options
use_stamps Dependency stamps

use_requirements The set of used requirements

The set of include search paths options for the preprocessor from the

use_includes
- used packages

The set of include search paths options for the fortran preprocessor from

use_fincludes the used packages

includes The overall set of include search paths for the preprocessor

The overall set of include search paths options for the fortran
preprocessor

fincludes

17.2.7- Utility macros

These macros are used to specify the behaviour of various actions in CMT.

74

X11 cflags

compilation flags for X11

Xm_cflags compilation flags for Motif

X_linkopts Link options for XWindows (and Motif)

make_shlib The command used to generate the shared library from the static o
shlibsuffix The system dependent suffix for shared libraries

shlibbuilder The loader used to build the shared library

shlibflags The additional options given to the shared library builder

symlink The command used to install a symbolic link

The command used to remove a symbolic link

build_prototype

The command used to generate the C prototype header file (defaul
internal cmt dedicated command)

to the

build_dependencies

The command used to generate dependencies (default to the interrn
dedicated command)

al cmt

lock_command

The command used to physically lock a package

unlock_command

The command used to physically unlock a package

make _hosts

The list of remote host names which exactly requirartake command

gmake_hosts

The list of remote host names which exactly requireggthake
command

17.3- Standard templates for makefilefragments

templatename usage used infragment

ADDINCLUDE

additional
includepath

<language java

<language java jar make_header jar_header java_header
library _header application_header protos_header
library_no_share library application dependencies
cleanup_header cleanup_library cleanup_application

without path

CONSTITUENT | "2Mme of the check_application document_header <document> trailer
constituent) .)

dsw_all_project_dependency dsw_project dsp_library _header
dsp_shared_library _header dsp_windows_header
dsp_application_header dsp_trailer constituent
check_application_header

DATE now make_header

FILENAME file name buildproto<language <documert

75

\tion

ader
| trailer

FILEPATH file path buildproto<language <documert
file suffix
FILESUFFIX (without <language
dot)
FILESUFFIX | e SUfiX | 0 cumens
(with dot)
complete
FULLNAME file path and| <language cleanup<documers dsp_contents
name
GROUP groupname | constituents_header
LINE sourcefiles | <languager dependencies constituent
LINKMACRO link macro | application
file name
NAME without path| buildproto<language java<documers
andsuffix
OBJS objectfiles Jar_headgr java_header jar I|brary_r_10_share library applice
cleanup_java document_header trailer
output file |.
OUTPUTNAME java
name
current <language dsw_header dsw_all_project
PACKAGE package dsw_all_project_trailer dsw_trailer dsp_all make_setup_he
name make_setup readme_header readme readme_use readme
current
PACKAGEPATH| package readme_use
location
PROTOSTAMPS| ProtoWPe 05 header
stampfiles
PROTOTARGET prototype library _header application_header
targetname
SUFFIX docgment <documer
suffix
TITLE title for make_header
makeheader -
USER username | make_header
current
VERSION package readme_header readme readme_use

versiontag

76

17.4- Makefile generationsequences

This section describes the various makefile generation sequences provicled b¥each
sequence description shows the precise selagefragmentsused during the operation.

Generatednakefile

description

used maké&agments

setup.make

Configuration files for
make

. make_setup_header
. make_setup

constituents.make

the main entry point
point for all
constituentargets

. constituents_header
. constituent
. check_application_header

<constituent.make

application or library
specific make
fragment

e N el
A WNERERO

NPl WwNRP| NP

©ONO U~ W

make_header

. java_header | jar_header | library_header

application_header

. protos_header
. buildproto
. jar | library | library_no_share | application

dependencies

. <language> | <language>_library | java
. cleanup_header

. cleanup

. cleanup_application

. cleanup_objects

. Cleanup_java

. Cleanup_library

. check_application

<constituent.make

document specific
makefragment

. make_header
. document_header

dependencies

. <document>
. <document-trailer>
. cleanup_header

<package>.dsw

Visual workspace
configurationfiles

NOURAWNR| OO A®WNER

dsw_header

. dsw_all project_header
. dsw_all_project_dependency
. dsw_all_project_trailer

dsw_project

. dsw_trailer
. dsp_all

77

1. dsp_library_header |
dsp_shared_library_header |

Visual project dsp_windows_header |

configurationfiles dsp_application_header

dsp_contents

dsp_trailer

<constituent>.dsp

readme_header
readme
readme_use
readme_trailer

README

PPl wb

17.5- The complete requirementssyntax

The syntax of specification statements that can be installeckouaementsfile are :

cmt-statement . alias

| application
| apply_pattern

| author

| branches

| build_strategy
| cleanup_script

| document

| ignore_pattern
| include_dirs

| include_path

| language

| library

| macro

| macro_append
| macro_prepend

| macro_remove

| macro_remove_all

| make_fragment

78

| manager

| package

| path

| path_append
| path_prepend
| path_remove
| pattern

| private

| public

| set

| set_append
| set_prepend

| set_remove

| setup_script

g B

| version

| version_strategy

alias . aliasalias-namevalue[tagvalue...]

application : applicationapplication-namg constituent-option..] source...

constituent-option . -0S9
| -windows
| -no_share
| -no_static
| -prototypes
| -no_prototypes
| -check
| -group=group-name
| -suffix=output-suffix

| -import=package-name

79

source
apply_pattern
author
branches

build_strategy

build-strategy-name

cleanup_script
document
ignore_pattern
include_dirs
include_path
language

language-option

library

macro
macro_append
macro_prepend
macro_remove
macro_remove_all

make_fragment

variable-namevariable-value

[-s=new-search-pathfile-name
apply_patterrpattern-namg template-nanrevalue... |
authorauthor-name
branchedranch-name..
build_strategybuild-strategy-name
prototypes

no_prototypes

keep_makefiles
rebuild_makefiles
cleanup_scripscript-name

documentdocument-namgconstituent-option..] source...

ignore_pattermpattern-name
include_dirssearch-path..
include_pattsearch-path
languagdanguage-nam¢ language-option..]
-suffix=suffix

-linker=linker-command

-prototypes
-preprocessor_commanpireprocessor-command
-fragmentfragment
-output_suffix=output_suffix
-extra_output_suffixextra_output_suffix

library library-name[constituent-option source...

macromacro-namevalue[tag value... |
macro_appenchacro-namevalue[tagvalue...]
macro_prepenchacro-namevalue[tagvalue... |
macro_removenacro-namevalue|[tagvalue... |
macro_remove_athacro-namevalue[tagvalue... |

make_fragmentragment-naméagment-option

80

fragment-option : -suffix=suffix
| -dependencies
| -headerfragment

| -trailer=fragment

manager . managemanager-name
package . packagegpackage-name
path . pathpath-namevalue[tagvalue...]
path_append . path_appeng@ath-namevalue[tagvalue...]
path_prepend . path_prepengath-namevalue[tag value...]
path_remove . path_removeath-namevalue[tagvalue...]
pattern pai[tern[-global] pattern-namemt-statement; cmt-statement
private . private
public . public
set . setset-namevalue[tag value...]
set_append . set_appendet-namevalue[tagvalue...]
set_prepend . set_prependet-namevalue| tag value... |
set_remove . set_removeet-namevalue[tagvalue...]
setup_script . setup_scripscript-name
tag : tagtag-namd tag...]
use . usepackage-namegversion-tag] access-path |
[use-option]

version . versionversion-tag
version-tag Teyversion—numbe[keyrelease-numbefr keypatch-numbet
use_option : -no_auto_imports

| -auto_imports
key . letter...
version_strategy . version_strategyersion-strategy-name
version-strategy-name : best_fit

| best fit no_check

81

| first_choice
| last_choice

| keep_all

17.6- The internal mechanism of cmt cvoperations

Generally, CVS does not handle queries upon the repository (such as knowing all installed
modules, all tags of the modules etc..). Various tools such as CVSWeb, LXR etc. provide
very powerful answers to this question, but all through a Web browser.

CMT provides a hook that can be installed within a CVS repository, based on a helper script
that will be activated upon a particular CVS command, and that is able to perform some
level of scan within this repository and return filtered information.

More precisely, this helper script (found#fCMTROOT}/mgr/cmt_buildcvsinfos2.sh) is
meant to be declared within thaginfo management file (see t/S manualfor more
details) as one entry nameamxintcvsinfos able to launch the helper script. This installation
can be operated at once using the follovdaaguence:

sh> cd ${CMTROOT}/mgr sh> gmake installcvs
This mechanism is thus fully compatible with standard remote accessreptsitory.

Once the helper script is installed, the mechanism operates as follows (this actually
describes the algorithms installed in esIimplementation::show_cvs_infosmethod
available incmt_cvs.cxxand is transparently run when one usesthiecvskxx
commandsg:

1. Find a location for working with temporary files. This is generally deduced from the
${TMPDIR} environment variable or itmp (or in the current directory if none of
these methods apply).

2. There, install a directory hamedhtcvs/<unigue-name>/.cmtcvsinfos

3. Then, from this directory, try to run a fake import command built as follovgs:Q
import -m cmt .cmtcvsinfos/< package- name> CMT vl

Obviously this command is fake, since no file exist in the temporary directory we have
just created. However,
4. This action actually triggers tloent_buildcvsinfos2.shscript, which simply receives
in its argument the module name onto which we need information. This information is
obtained by scanning the files into the repository, and an answer is built with the
following syntax:[error= error-text] (1) tags=tag... (2
branches= branch ... (3) subpackages= sub- package ... (4)
1. In case of error (typically when the requested module is not found in the
repository) a text explaining the error condition is returned
2. The list of tags found on the requirements file
3. The list of branches defined in this packages (ie subdirectories not containing a
requirements file)
4. The list of subpackages (ie subdirectories containing a requirements files)

82

http://www.cvshome.org/docs/manual/index.html

package
application

library

document

direct acyclic graph
CVS

environment variable
constituents

make

macro

patterns

shared library
package area

tag

Christian Arnault

83

	CMTConfiguration Management Tool
	Version v1r12Christian Arnaultarnault@lal.in2p3.fr

	Contents
	1 - Copyright.
	 2 - Presentation.
	 3 - The conventions.
	 4 - The architecture of the environment.
	 4.1 - Supported platforms

	 5 - Installing a new package.
	 6 - Localizing a package - The CMTPATH configuration parameter.
	 7 - Managing site dependent features - The CMTSITE environment variable.
	 8 - Configuring a package.
	 9 - Selecting a specific configuration.
	 9.1 - Describing a configuration.
	 9.2 - Defining the user tags.
	 9.3 - Activating tags.

	 10 - Working on a package.
	 10.1 - Working on a library.
	 10.2 - Working on an application
	 10.3 - Working on a test or external application
	 10.4 - Construction of a global environment

	 11 - Defining a document generator
	 11.1 - An example : the tex document-style
	 11.2 - How to create and install a new document style
	 11.3 - Examples

	 12 - The tools provided by CMT
	 12.1 - The requirements file
	 12.1.1 - The general requirements syntax
	 12.1.2 - The complete requirements syntax

	 12.2 - The concepts handled in the requirements file
	 12.2.1 - Meta-information : author, manager
	 12.2.2 - package, version
	 12.2.3 - Constituents : application, library, document
	 12.2.4 - Groups
	 12.2.5 - Languages
	 12.2.6 - Symbols : alias, set, set_append, set_prepend, set_remove, macro, macro_append, macro_prepend, macro_remove, macro_remove_all, path, path_append, path_prepend, path_remove
	 12.2.7 - use
	 12.2.8 - pattern, apply_pattern, ignore_pattern
	 12.2.9 - branches
	 12.2.10 - build_strategy, version_strategy
	 12.2.11 - setup_script, cleanup_script
	 12.2.12 - include_path
	 12.2.13 - include_dirs
	 12.2.14 - make_fragment
	 12.2.15 - public, private
	 12.2.16 - tag

	 12.3 - The general cmt user interface
	 12.3.1 - cmt broadcast [-select=list] [-exclude=list] [-local] [-global] [-begin=pattern] [-depth=<n>] [-all_packages] <shell command>
	 12.3.2 - cmt build <option>
	 12.3.3 - cmt check configuration
	 12.3.4 - cmt check files <reference-file> <new-file>
	 12.3.5 - cmt checkout ...
	 12.3.6 - cmt co ...
	 12.3.7 - cmt cleanup [-csh|-sh]
	 12.3.8 - cmt config
	 12.3.9 - cmt create <package> <version> [<area>]
	 12.3.10 - cmt filter <in-file> <out-file>
	 12.3.11 - cmt help
	 12.3.12 - cmt lock cmt lock [<package> <version> [<area>]]
	 12.3.13 - cmt remove <package> <version> [<area>]
	 12.3.14 - cmt remove library_links
	 12.3.15 - cmt run shell-command
	 12.3.16 - cmt setup [-csh|-sh|-bat]
	 12.3.17 - cmt show <option>
	 12.3.18 - cmt system
	 12.3.19 - cmt unlock cmt unlock [<package> <version> [<area>]]
	 12.3.20 - cmt version
	 12.3.21 - cmt cvstags <module>
	 12.3.22 - cmt cvsbranches <module>
	 12.3.23 - cmt cvssubpackages <module>

	 12.4 - The setup and cleanup scripts
	 12.5 - cmt build prototype

	 13 - Using cvs together with CMT
	 13.1 - Importing a package into a cvs repository
	 13.2 - Checking a package out from a cvs repository
	 13.3 - Querying CVS about some important infos
	 13.4 - Working on a package, creating a new release
	 13.5 - Getting a particular tagged version out of cvs

	 14 - Interfacing an external package with CMT
	 15 - Installing CMT for the first time
	 15.1 - Installing CMT on your Unix site
	 15.2 - Installing CMT on a Windows or Windows NT site

	 16 - Differences with previous versions of CMT
	 16.1 - Converting a package that was managed with previous versions of CMT †or methods‡
	 16.2 - Operations in a Windows environment

	 17 - Appendices
	 17.1 - Standard make targets predefined in CMT
	 17.2 - Standard macros predefined in CMT
	 17.2.1 - Structural macros
	 17.2.2 - Language related macros
	 17.2.3 - Package customizing macros
	 17.2.4 - Constituent specific customizing macros
	 17.2.5 - Source specific customizing macros
	 17.2.6 - Generated macros
	 17.2.7 - Utility macros

	 17.3 - Standard templates for makefile fragments
	 17.4 - Makefile generation sequences
	 17.5 - The complete requirements syntax
	 17.6 - The internal mechanism of cmt cvs operations

