
CMT

Configuration Management Tool

Version v1r10

Christian Arnault

arnault@lal.in2p3.fr

Contents
1. Copyright.
2. Presentation.
3. The conventions.
4. The architecture of the environment.

1. Supported platforms
5. Installing a new package.
6. Localizing a package - The CMTPATH environment variable.
7. Managing site dependent features - The CMTSITE environment variable.
8. Configuring a package.
9. Selecting a specific configuration.

1. Describing a configuration.
2. Defining the user tags.
3. Activating tags.

10. Working on a package.
1. Working on a library.
2. Working on an application
3. Working on a test or external application
4. Construction of a global environment

11. Defining a document generator.
1.
2. How to create and install a new document style
3. Examples

12. The tools provided by CMT
1. The requirements file

1. The general requirements syntax
2. The complete requirements syntax

2. The concepts handled in the requirements file
1. Meta-information : author, manager
2. package, version
3. Constituents : application, library, document
4. Groups
5. Languages

1

6. Symbols : alias, set, set_append, set_prepend, set_remove, macro, macro_append,
macro_prepend, macro_remove, macro_remove_all, path, path_append, path_prepend, path_remove

7. use
8. pattern, apply_pattern, ignore_pattern
9. branches

10. build_strategy, version_strategy
11. setup_script, cleanup_script
12. include_path
13. include_dirs
14. make_fragment
15. public, private
16. tag

3. The general cmt user interface
1. cmt broadcast [-select=list] [-exclude=list] [-local] [-depth=n] [-all_packages]

<shell command>
2. cmt build <option>
3. cmt check_configuration
4. cmt check_files <reference-file> <new-file>
5. cmt checkout ...
6. cmt co ...
7. cmt cleanup [-csh|-sh]
8. cmt config
9. cmt create <package> <version> [<area>]

10. cmt filter <in-file> <out-file>
11. cmt help
12. cmt lock [<package> <version> [<area>]]
13. cmt remove <package> <version> [<area>]
14. cmt remove library_links
15. cmt run shell-command
16. cmt setup [-csh|-sh]
17. cmt show <option>
18. cmt system
19. cmt unlock [<package> <version> [<area>]]
20. cmt version
21. cmt cvstags <module>
22. cmt cvsbranches <module>
23. cmt cvssubpackages <module>

4. The setup and cleanup scripts
5. cmt build prototype

13. Using cvs together with CMT
1. Importing a package into a cvs repository
2. Checking a package out from a cvs repository
3. Querying CVS about some important infos
4. Working on a package, creating a new release
5. Getting a particular tagged version out of cvs

14. Interfacing an external package with CMT
15. Installing CMT for the first time

2

1. Installing CMT on your Unix site
2. Installing CMT on a Windows or Windows NT site

16. Differences with previous versions of CMT
1. Converting a package that was managed with previous versions of CMT (or methods)
2. Operations in a Windows environment

17. Appendices
1. Standard make targets predefined in CMT
2. Standard macros predefined in CMT

1. Structural macros
2. Language related macros
3. Package customizing macros
4. Constituent specific customizing macros
5. Source specific customizing macros
6. Generated macros
7. Utility macros

3. Standard templates for makefile fragments
4. Makefile generation sequences
5. The complete requirements syntax
6. The internal mechanism of cmt cvs operations

1 - Copyright.
Copyright (c) 1996 LAL Orsay, UPS-IN2P3-CNRS (France).

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.
All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the
Computer Application Development Group at LAL Orsay

(Laboratoire de l’Accelerateur Linaire - UPS-IN2P3-CNRS).

Neither the name of the Institute nor of the Laboratory may be used to endorse or promote
products derived from this software without specific prior written permission.

This software is provided by the LAL and contributors ‘‘as is’’ and any express or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose are disclaimed. In no event shall the LAL or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,

3

or tort (including negligence or otherwise) arising in any way out of the use of this software, even
if advised of the possibility of such damage.

2 - Presentation.
This environment, based on some management conventions and comprising several shell-based
utilities, is an attempt to formalize software production and especially configuration management
around a package-oriented principle.

The notion of packages represents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for producing a system or a
framework. In such an environment, several persons are assumed to participate in the
development and the components themselves are either independent or related to each other.

The environment provides conventions (for naming packages, files, directories and for addressing
them) and tools for automating as much as possible the implementation of these conventions. It
permits the description of the configuration requirements and automatically deduce from the
description the effective set of configuration parameters needed to operate the packages (typically
for building them or using them).

CMT lays upon some organisational or managerial principles or mechanisms described below.
However, it permits in many respects the users or the managers to control, specialize and
customize these mechanisms, through parameterization, strategy control and generic
specifications.

Many such packages are produced and maintained.
The packages may or not be related to each other (defining a direct acyclic graph of
packages - not just a single tree).
Each executable application (from now on simply named applications) either belongs to a
particular package and/or defines its own environment and then makes use of some other
packages.
Each package can be uniquely identified within the system or the framework by a name
which is usually a short mnemonic and which may be also used for isolating its name-space
(eg. by prefixing components of the package by its mnemonic).
A package installed in this environment may be exported to a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved
through the transport, the reconstruction procedure will be preserved. Configuration
specifications can be easily provided to cope with machine, site or system specific features.
Packages are maintained consistently to their declared relationships to each other through a
version identification model based on :

a version is defined with a mnemonic comprising at least two numbers for the major id
and the minor id,
versions with different major ids are said to be incompatible,
versions with same major ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.

Version control and management schemes (eg. by using CVS) are usually consistently
operated, applying the conventions on organization and version identification.
An application that uses one or several packages managed in this environment should not
itself be constrained to be managed this way. The tools should only require a few exported
features (such as a few environment variables) for referencing any given package.

4

similarly, a package maintained in this environment must be able to use packages that are
not managed in this environment.

Following these definitions, the basic configuration management operations involved here (and
serviced by the CMT’ tools) consist of :

installing the packages in conventional locations so that they can be referenced by each
other,
describing the configuration requirements for each package:

dependencies to other packages,
symbols to be exported to client packages (environment variables, make macros, etc...)
components of the packages (libraries, applications, documents)
Make macros
Strategies that CMT should follow at run time, overriding its default ones.
Generic behavioural patterns meant to describe generic configuration items.

deducing the effective configuration parameters from the requirements so as to automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible alternate versions of available packages).

3 - The conventions.
This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and developed :

Each package is installed in a standard directory structure defined at least as follows:

<some root>/<Package mnemonic>/<version mnemonic>/cmt

or / and (obsolescent convention)

<some root>/<Package mnemonic>/<version mnemonic>/mgr

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized as a valid CMT package.

However, many other parallel branches (similar to cmt) such as src, include or test may be
freely added to this list according to the specific needs of each package. In particular, a set of
such parallel branches are expected to contain binary outputs (those that compilers, linkers,
archive managers or other kinds of code or pseudo-code generators can produce). Their
name always corresponds to the particular configuration tag used to produce the output
(such as the machine or operating system type). The CMT toolkit provides the cmt system
utility (a shell script) that provides a default value for this token. An environment variable
(CMTCONFIG) is also assigned to this value (See this section for a complete description of
configuration tags).

5

Each branch may in addition be freely structured, and there is no constraint to the
complexity of this organization.

There are no constraints on the number of roots into which CMT packages are installed.
We’ll see later on how the different roots will be declared and identified by CMT.

examples of such structure can be :

[IMAGE]

Structuring a sofware base.

The typical leaves of a package directory structure are therefore:

cmt or mgr for the management utilities (such as the Makefile)

src the sources of the package

doc for the package documentation

${CMTCONFIG} for the produced binaries (compiled objects, libraries, executables)

As many other useful branches as needed may also be defined according to the specific
needs of the packages.

Any other deeper hierarchy structure may also be defined, such as for instance, organizing
the sources into a hierarchy of branches.

[IMAGE]

Structuring a package.

4 - The architecture of the environment.
This environment is based on the fact that one of its packages (named CMT) provides the basic
management tools. CMT, as a package, has very little specificities and as such must itself obey
the general conventions. The major asymetry between CMT and all other packages is the fact that
once CMT is installed it implicitly defines the default root for all other packages (through the
environment variable CMTROOT).

Then packages may be installed either in the default root or in completely different areas. The
only constraint in this case being that their root will have to be specified explicitly.

A typical configuration for this environment consists of selecting a public area (generally
available from several machines through an NFS or AFS-like mechanism), installing the CMT
basic package, and then installing user packages in this default root or in private ones. One
frequent semantic given to this style of configuration is to consider the packages installed in the
area hanging below default root as the publicly available version, whereas packages installed
elsewhere are rather meant to be managed in a private context, or in the context of a non public
project. However, dependencies between packages will always be possible (as long as the system
based protections provide appropriate access rights).

6

CMT is operated through one main user interface : the cmt command, which handles the CMT
conventions and which provides a set of services for :

creating a new package, installing it below the default root or in a private area. This
operation will create or check the local package directory tree and build up several minimal
scripts that can be customized (see the description of the create command),
describing or monitoring :

the relationships between the package and other packages and the (public) exporting
features the package should provide,
the set of features needed for the package development (private features)
the components of the package in terms of libraries or executables,

automatically generating the reconstruction scripts (makefiles) from this description.
recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared libraries, C prototypes, management of interactions between CVS and CMT
itself, the management of a similar architecture for Windows or OS9, setting up protections for
packages (though locks) etc...).

4.1 - Supported platforms
CMT has been ported and tested on a wide range of machines/operating systems, including :

DEC-Unix V4.0
HP-UX-10 (several types of platforms)
AIX-4
Solaris
IRIX
Several variants of LynxOS
Linux 2.0
Windows 95/98/NT/Windows2000 (nmake based environment and
MSDev/VisualC++ environment)
Darwin (Mac OS X)

This in particular means that a package developped on one platform may be re-configured
towards any of these platforms without any change to its configuration description (setup
scripts, makefiles, ...).

5 - Installing a new package.
We consider here the installation of a user package. Installing CMT itself requires special
attention and is described in dedicated section of this document.

Therefore, we assume that some root directory has been selected by the system manager, and that
CMT is already installed in this area. One first has to setup CMT in order to gain access to the
various management utilities, using for example the shell command:

7

csh> source /lal/CMT/v1r10/mgr/setup.csh

or

ksh> . /lal/CMT/v1r10/mgr/setup.sh

or

dos> call \lal\CMT\v1r10\mgr\setup.bat

Obviously, this operation must be performed (once) before any other CMT action. Therefore it is
often recommended to install this setup action straight in the login script.

The setup script used in this example is a constant in the CMT environment : every configured
package will have one such setup script automatically generated and installed by CMT. It is one
important entry point to any package (and thus to CMT itself). It provides environment variable
definitions and invocations of setup scripts for related (used) packages (A corresponding cleanup
script is also provided). This script contains a uniform mechanism for interpreting the
requirements file so as to dynamically define environment variables, aliases for the package itself
and all its used packages. It is constructed once per package installation by the cmt create
command, or restored by the cmt config command (if it has been lost).

A package is primarily defined by a name and a version identifier. These two attributes will be
given as arguments to cmt create such as in the following example :

csh> cd mydev
csh> cmt create Foo v1
--
Configuring environment for package Foo version v1.
CMT version v1r10. [1]
Root set to /users/dsksi/arnault/mydev
System is alpha [2]
--
Installing the package directory [3]
Installing the version directory
Installing the cmt directory
Creating setup scripts.
Creating cleanup scripts.

1. This shows which actual CMT version you are currently using
2. This shows the current configuration tag (also available by the cmt system command). In

this example this is a Compaq alpha machine
3. This shows the detailed construction of the complete directory structure, starting from the

top directory which has the name of the package. Since we are creating a completely new
package, there will be by default only two branches below the version directory : cmt and
src.

The package creation occured from the current directory, creating from there the complete
directory tree for this new package.

8

In the next example, we install the package in a completely different area, by explicitly specifying
the path to it as a third argument to cmt create :

> cmt create Foo v1 ~/Packages
--
Configuring environment for package Foo version v1.
CMT version v1r10.
Root set to /users/dsksi/arnault/Packages.
System is alpha
--
Installing the package directory
Installing the version directory
Installing the cmt directory
Creating setup scripts.
Creating cleanup scripts.

Several file creations occurred at this level :
a minimal directory tree for the package, including src and cmt (the other branches will be
installed when needed or generated at build time).

an empty configuration specification file (named requirements) installed in the cmt branch.

A minimal Makefile (on Unix environments), containing

include $(CMTROOT)/src/Makefile.header

include $(CMTROOT)/src/constituents.make

This Makefile does not need any modification to build any of the constituents managed by
CMT. The intermediate makefile fragments will always be re-generated transparently and
automatically at build time. However (and thanks to this feature), this file will not be
modified anymore by CMT itself. Thus you may insert any particular make statement you
would feel appropriate, typically when you ask for operations that cannot be taken into
account by CMT.

A similar minimal NMake file (on Windows environments), containing

!include $(CMTROOT)\src\NMakefile.header

!include $(CMTROOT)\src\constituents.nmake

the setup and cleanup scripts (one flavour for each shell family).
One may then setup this new package by running the setup script (which will not have much
effect yet since the requirements file is empty) :

csh> cd ~/mydev/Foo/v1/cmt
csh> source setup.csh

or

csh> cd ~/Packages/Foo/v1/cmt
csh> source setup.csh

or

9

dos> cd \Packages\Foo\v1\cmt
dos> call setup.bat

The FOOROOT and FOOCONFIG environment variables are defined automatically by this
operation.

It should be noted that running the setup script of a package is not always necessary for building
operations. The only situation where running this script may become useful, is when an
application is to be run, while requiring domain specific environment variables defined in one of
the used packages. Besides this particular situation, running the setup scripts may not be needed
at all.

Lastly, this newly created package may be removed by the quite similar remove command, using
exactly the same arguments as those used for creating the package.

csh> cd mydev
csh> cmt remove Foo v1
--
Removing package Foo version v1.
CMT version v1r10.
Root set to /users/dsksi/arnault/mydev.
System is alpha
--
Version v1 has been removed from /users/dsksi/arnault/mydev
Package Foo has no more versions. Thus it has been removed.

or:

csh> cmt remove Foo v1 ~/Packages
--
Removing package Foo version v1.
CMT version v1r10.
Root set to /users/dsksi/arnault/Packages.
System is alpha
--
Version v1 has been removed from /users/dsksi/arnault/Packages
Package Foo has no more versions. Thus it has been removed.

So far our package is not very useful since no constituent (application or library) is installed yet.
You can jump to the section showing how to work on an application or on a library for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of as follows:

csh> cd ../src
csh> cat >FooTest.c
#include <stdio.h>

int main ()
{
 printf ("Hello Foo\n");
 return (0);
}

csh> cd ../cmt

10

csh> vi requirements
...
application FooTest FooTest.c
csh> gmake
csh> ../${CMTCONFIG}/FooTest.exe
Hello Foo

This can still be simplified by providing the -check option to the application definition:

csh> cd ../cmt
csh> vi requirements
...
application FooTest -check FooTest.c
csh> gmake check
Hello Foo

6 - Localizing a package - The CMTPATH
configuration parameter.

In the next sections, we’ll see that packages reference each other by means of use relationships.
CMT provides a quite flexible mechanism for localizing the referenced packages.

A given version of a given package is always referred to by using a use statement within its
requirements file. This statement should specify the package through three keys :

its name (such as Cm)
its version (such as v7r5)
optionally its expected location or prefix (such as /lal) (also called the use path)

use Cm v7r5

or

use Cm v7r5 A

or

use Cm v7r5 /projectB/A

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order) :

1. the absolute access path, if the use path is absolute,
2. the access paths optionally registered in the configuration parameter - see below -

CMTPATH (and in decreasing priority, the first element being searched for first),
3. the default root.
4. the path where the current package is installed,

11

The configuration parameter CMTPATH can be specified either in the environment
variable named CMTPATH or in .cmtrc files, which can themselves be located either in the
current directory, in the home directory of the developper or in ${CMTROOT}/mgr. In the
Windows environment, this configuration parameter may also be installed as a Registry
under either the keys:

HKEY_LOCAL_MACHINE/Software/CMT/path
HKEY_CURRENT_USER/Software/CMT/path

(A graphical tool vailable in %CMTROOT%\VisualC\install.exe permits the interactive
modification of this list)

If the path argument is specified as a relative path (ie. there is no leading slash character or it’s
not a disk on windows machines), it will be used as an offset to each search case. The search is
done starting from the list specified in the CMTPATH configuration parameter, then using the
default root; and the offset is appended at each searched location.

The CMTPATH parameter is thus used as a search list for the packages, and the individual paths
are separated in this list by spaces or by colons.

As an example, if we specify the CMTPATH parameter as follows :

csh> setenv CMTPATH /users/dsksi/arnault/dev:/exp/virgo/projects

or (in a .cmtrc file)

CMTPATH=/users/dsksi/arnault/dev:/exp/virgo/projects

Then a use statement (defined within a given package) containing :

...
use Cm v7r5
use Cmo v1 Cm
...

(and assuming that the default root is /lal) would look for the package Cm from :
1. /users/dsksi/arnault/dev/Cm/v7r5/cmt
2. /exp/virgo/projects/Cm/v7r5/cmt
3. /lal/Cm/v7r5/cmt
4. the same path as the current package

Whereas the package Cmo would be searched from :
1. /users/dsksi/arnault/dev/Cm/Cmo/v1/cmt
2. /exp/virgo/projects/Cm/Cmo/v1/cmt
3. /lal/Cm/Cmo/v1/cmt
4. the directory Cm within the same path as the current package,

The packages are searched assuming that the directory hierarchy below the access paths always
follow the convention :

1. there is a first directory level named according to the package name,
2. then the next directory level is named according to the version tag,
3. then there is a branch named cmt,
4. lastly there is a setup script within this cmt branch.

Thus the list of access paths is searched for until these conditions are properly met.

12

The actual complete search list can always be visualized by the command:

> cmt show path
Add path /users/dsksi/arnault/dev from CMTPATH
Add path /exp/virgo/projects from CMTPATH
Add path /lal from default path
Add path /tmp/arnault from current package
#
/users/dsksi/arnault/dev:/exp/virgo/projects:/lal:/tmp/arnault

7 - Managing site dependent features - The CMTSITE
environment variable.

Software bases managed by CMT are often replicated to multiple geographically distant sites (as
opposed to machines connected through AFS-like WAN). In this kind of situation, some of the
configuration parameters (generally those used for instance to reference local installations of
external software) take different values.

The CMTSITE environment variable or registry in Windows environments, is entirely under the
control of the site manager and can be set up with a value representing the site (typical values
may be LAL, Virgo, Atlas, LHCb, CERN, etc.).

This variable, when set, corresponds to a tag (with the same priority as CMTCONFIG) which
can be used to select different values for make macros or environment variables.

A typical use for this tag is to build up actual values for the location path of an external software
package. Here we take the example of the Anaphe utility:

macro AnapheTOP "" \
 CERN "/afs/cern.ch/sw/lhcxx" \
 BNL "/afs/rhic/usatlas/offline/external/lhcxx" \
 LBNL "/auto/atlas/sw/lhcxx"

8 - Configuring a package.
The first ingredient of a proper package configuration is the set of configuration parameters
which has to be specified in a text file named requirements and installed in the cmt branch of the
package local tree.

An empty version of this file is automatically created the first time the package is installed, and
the package manager is expected to augment it with configuration specifications.

Many configuration parameters are supposed to be described into this requirements file (one per
package) - see the detailed syntax specifications here - namely :

the package information about its author(s) and manager(s)
the relationships with other packages
the package constituents (libraries, applications, documents, etc.)

13

the parameterization of the tools used in the build process (eg. make macros)
the parameterization of the run-time activity (eg. environment variables, search paths, etc.)

Generally, every such appropriate parameter will be deduced on demand from the requirements
file(s) through the various queries functions available from the cmt main driver. Therefore there
is no systematic package re-configuration per se, besides the very first time a package in newly
installed in its location (using the cmt create action).

Query actions (generally provided using the cmt show family of commands) are embedded in the
various productivity tools, such as the setup shell scripts, or makefile fragment generators.

These query actions always interpret the set of requirements files obtained from the current
package and from the packages in the effective used chain. Symbols, tags and other definitions
are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Other configuration parameters are also optionally inserted from the HOME and USER context
requirements files

Most typical examples of these query functions are:

cmt setup builds a shell command line for setting up environment variables

cmt show macros construct the effective set of inherited make macros
cmt show uses gives the ordered and flattened set of used packages
cmt show constituents lists the package’s constituents
cmt show path lists the effective search path for packages.
cmt show strategies shows the current setup of various functional CMT strategies.

9 - Selecting a specific configuration.
A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

the operating system (such as Linux, Windows, ...)
the platform (such as Intel, Compaq, Sun, etc...)
the choice of the compiler (such as g++, egcs, CC, etc...)
options used for compiling (such as optimizer, debugger, etc...) or linking
the context specifications (selecting a particular version of a firmware, selecting a database
server, ...)

Carefully describing this configuration is essential both for maintenance operations (so as to
remember the precise conditions in which the package was built) and when the development area
is shared between machines running different operating systems.

9.1 - Describing a configuration.
CMT relies on several complementary conventions or mechanisms for this description and
the associated management.

14

The basic binary specification automatically computed by CMT in the
${CMTROOT}/mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type and the
operating system type (using a mixing of the uname standard UNIX command with
various operating system specific definitions such as the AFS based fs sysname
command)

The CMTCONFIG environment variable, filled in by default from the latter, but which
can be completely overridden either from the shell or from the requirements files

The CMTSITE environment variable defines one additional configuration tag, which
characterizes the current site.

The value given by the uname standard Unix facility is always a valid configuration
tag.

The concept of user defined tag set. Tags are additional qualifiers for the configuration,
they are entirely user defined, and have no a-priori semantics.

CMT defines the concept of current tag set, as the set of currently active tags. And the
current active tag set can always be visualized using the cmt show tags command.

9.2 - Defining the user tags.
The user configuration tags can generally be specified though various complementary
means:

CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

> export CMTSITE=CERN

CMTSITE and CMTCONFIG can alternatively be specified using the set statement in a
requirements file

set CMTSITE "CERN"
set CMTCONFIG "${CMTBIN}" sun "Solaris-CC-dbg"

Additional tags may also be defined as a mixture of other tags, using the tag statement
(in a requirements file):

tag newtag tag1 tag2 tag3

which means that:
newtag defines a mixture of tag1 tag2 tag3
when newtag is active, then both tag1, tag2 and tag3 are simultaneously active

15

9.3 - Activating tags.
By default, only CMTCONFIG, uname and CMTSITE are active at any time.

Then it is possible to activate alternate tags through the following arguments to any cmt
command:

-tag=<primary-tag>

will cleanup the complete current tag set, and provide the new main tag.

-tag_add=<tag-list>

will add to the current tag set the tags specified in the comma separated list

-tag_remove=<tag-list>

will remove from the current tag set the tags specified in the comma separated list

Giving these arguments generally make the selected tag set active only during the selected
command. However if instead they are given to the source setup.[c]sh command, then the
new active tag set becomes persistent for the current session.

The current active tag set can always be visualized using the cmt show tags command.

> cmt show tags
Linux
LAL

> cmt -tag_add=tag1,tag2,tag3 show tags
Linux
LAL
tag1
tag2
tag3

> cmt show tags
Linux
LAL

> source setup.sh -tag_add=tag1,tag2,tag3

> cmt show tags
Linux
LAL
tag1
tag2
tag3

> source setup.sh -tag_remove=tag2,tag3

> cmt show tags
Linux
LAL
tag1

16

Typical usages of those extra tags are:

when using special compiler options (e.g. optimization, debugging, ...)
for switching to different compilers (e.g. gcc versus the native compiler)
when one uses a special debugging environment such as Insure or Purify
when using special system specific features (such as whether one uses thread-safe
algorithms or not)

Due to the tag set concept, it is possible to specify, for instance, that although the current
context will still use the default binary tag (ie CMTCONFIG is not changed) a debug
environment is used.

sh> cd/Bar/v1/cmt
sh> . setup.sh -tag_add=debug

Then all symbol definitions providing specific values triggered by the debug selector will be
selected, such as in:

macro_append cppflags "" \
 debug " -g "

10 - Working on a package.
In this section, we’ll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are continuing the example of the Foo
package already used in this document.

10.1 - Working on a library.
Let’s assume, as a first example, that the Foo package is originally composed of one library
libFoo.a itself made from two sources : FooA.c and FooB.c. A shared flavour of the library
libFoo.so or libFoo.sl or libFoo.dll) is also foreseen.

The minimal set of branches provided by CMT (once the cmt create operation has been
performed) for a package includes src for the sources and cmt for the Makefiles and other
scripts.

The various tools CMT provide will be fully exploited if one respects the roles these
branches have to play. However it is always possible to extend the default understanding
CMT gets on the package by appropriate modifiers (typically by overriding standard
macros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a software package.

We first have to create the two source files into the src branch (typically using our favourite
text editor). Then a description of the expected library (ie. built from these two source files)
will be entered into the requirements file. The minimal syntax required in our example will
be :

17

csh> cd ../cmt
csh> vi requirements (1)
library Foo FooA.c FooB.c

1. the requirements file located in the cmt branch of the package receives the description
of this library component. This is done using one library statement.

The cmt create command did generate a simple Makefile (or NMake file) which is generaly
sufficient for all standard operations, since CMT continuously and transparently manages
the automatic reconstruction of all intermediate makefile fragments. We therefore simply
and immediately execute gmake as follows:

...v1/cmt> [g]make

Rebuilding cmt_path.make [1]
Rebuilding constituents.make [1]
Rebuilding library links [1]
Rebuilding setup.make [1]
alpha.make ok [2]
Library Foo [1][3]
starting Foo [4]
gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
Rebuilding ../alpha/Foo_dependencies.make [1]
gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
Now rebuilding ../src/FooA.pp
Now rebuilding ../src/FooB.pp
Foo : Protos ok
../alpha/FooA.o
cd ../alpha/; cc -c -I../src/ -I"../src/" -std1 -o FooA.o ../src/FooA.c
../alpha/FooB.o
cd ../alpha/; cc -c -I../src/ -I"../src/" -std1 -o FooB.o ../src/FooB.c
library
cd ../alpha/; ar -clr ../alpha/libFoo.a ../alpha/FooA.o ../alpha/FooB.o
ranlib ../alpha/libFoo.a
cat /dev/null >../alpha/Foo.stamp
cd ../alpha/; /lal/CMT/v1r10/mgr/cmt_make_shlib_common.sh noextract alpha Foo
------> Foo : library ok
------> Foo ok
gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
all ok.

or, for nmake:

...v1/cmt> nmake /f nmake

One sees from this example that :
1. The very first time this rebuilding operation occurs, some makefile fragments have

automatically been built so as to contain the extended set of Makefile macros deduced
from the effective configuration (read from the requirements file). These fragments are
automatically rebuilt (if needed) each time one of the requirements file changes.

2. The directory which is used for the binaries (i.e. the results of compilation or the
libraries) has been automatically created by a generic target (dirs) which is defined

18

within [N]Makefile.header. A new binary directory will be created each time a new
value of the CMTCONFIG environment variable is defined or a tag is provided on the
command line to make.

3. Each component of the package (be it a particular library or a particular executable)
will have its own makefile fragment (named ../${CMTCONFIG}/<name>.[n]mak[e]).
This dedicated makefile takes care of filling up the library and creating the shared
library (on the systems where this is possible).

4. These dedicated makefiles are automatically executed from the main one, and the
standard make macro constituents can be redefined (e.g. in the requirements file) so as
to customize the building sequence.

This mechanism relies on some conventional macros and incremental targets used within
the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It’s quite important to understand the list of possible customization macros, since
this is the main communication medium between CMT and the package manager. See the
complete table of those conventional macro when you want to interact with the standard
CMT behaviour.

10.2 - Working on an application
Assume we now want to add a test program to our development. Then we create a FooTest.c
source, and generate the associated makefile (specifying that it will be an executable instead
of a library) :

csh> cd ../src
csh> emacs FooTest.c
...
csh> cd ../cmt
csh> vi requirements
...
application FooTest FooTest.c

So that we may simply build the complete stuff by running :

> [g]make
Checking configuration
Rebuilding cmt_path.make
Rebuilding constituents.make
Rebuilding setup.make
Rebuilding alpha.make
alpha.make ok
------> starting FooTest
Application FooTest
gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt
Rebuilding FooTest_dependencies.make
gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
gmake[1]: Entering directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
Now rebuilding ../src/FooTest.pp
FooTest : Protos ok
cd ../alpha/; cc -c -I../src/ -I../src/ -std1 ../src/FooTest.c
cd ../alpha/; cc -o FooTest.exe.new ../alpha/FooTest.o ; \
 mv -f FooTest.exe.new FooTest.exe

19

------> FooTest ok
gmake[1]: Leaving directory ‘/users/dsksi/arnault/mydev/Foo/v1/cmt’
------> all ok.

Which shows that a program FooTest.exe has been built from our sources. Assuming now
that this program needs to access the Foo library, we’ll just add the following definition in
the requirements file :

...
macro Foo_linkopts " -L$(FOOROOT)/$(Foo_tag) -lFoo " \
 WIN32 " $(FOOROOT)/$(Foo_tag)/Foo.lib "
...

The Foo_linkopts conventional macro will be automatically inserted within the
use_linkopts macro.

Like all other make macros used to build a component, the Foo_linkopts will be specified
within the requirements which gives several benefits:

variants of the macro definition can be provided
monitoring features of CMT such as the cmt show macro Foo_linkopts command can
be used later on
macros defined this way may be later on inherited by client packages which will use
our package.

10.3 - Working on a test or external application
It is also possible to work on a test or external application, ie. when one does not wish to
configure the development for this application using CMT. Even in this case, it is possible
to benefit from the packages configured using CMT by partially using CMT, just for used
relationships.

Here, no special convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to describe in a requirements file the use
relationships, as well as the make macro definitions, quite similarly to the package entirely
configured using CMT.

Most of the options provided by the cmt user interface are still available in these conditions.

10.4 - Construction of a global environment
A software base generally consists in many packages, some of them providing libraries or
documents, others providing applications, some providing both, some providing just glues
towards external software products.

On another view, this software base may a mix of packages shared between several projects
and sets of packages specific to various projects. One may have several software bases as
well (combined using the CMTPATH environment variable).

20

In such contexts, it is often desirable that a given project defines its own selection of all
existing packages. This can easily be done with CMT by defining a project package,
containing only use statements towards the appropriate selection of packages for this
particular project.

Let’s consider as an example the project named MyProject. We may create the package
named MyProject similarly to any other package :

csh> cd
csh> cmt create MyProject v1

Then the requirements file of this new package will simply contain a set of use statements,
defining the official set of validated versions of the packages required for the project. This
mechanism also represents the notion of global release traditionally addressed in
configuration management environments

package MyProject

use Cm v7r6
use Db v4r3
use El v4r2
use Su v5
use DbUI v1r2 Db
use ElUI v1r1 El
use VSUUI v3 Su/VSU
use VMM v1
use VPC v3

setup_script set_path
cleanup_script reset_path

In this example we have also specified that this global environment will provide an
additional setup script (found by default in ${MYPROJECTROOT}/cmt/set_path.csh)
and containing specific shell commands.

Then any user wanting to access the so-called official release of the package set appropriate
to the project MyProject will simply do (typically within its login shell script) :

a login script

...

source /MyProjectDevArea/MyProject/v1/cmt/setup.csh

Later on, future evolutions of the MyProject package will reflect progressive integration
steps, which validate the evolutions of each referenced package.

21

11 - Defining a document generator
In a Unix environment, documents are built using make (well generally its gnu flavour) or
nmake in Windows environments. The basic mechanism provided in CMT relies on make
fragment patterns containing instructions on how to rebuild document pieces. Many such
generators are provided by CMT itself so as to take care of of the most usual cases (e.g.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones provided by CMT. This
mechanism is very similar to the definition or re-definition of macros or environment variables in
that every new generator has to be first declared in a requirements file belonging to a package
(CMT actually declares its default generators within its requirements file), allowing all its client
packages to transparently acquire the capacity to generate documents of that sort.

CMT manages two categories of constituents:
1. Applications and Libraries are handled using pre-defined make fragments (mainly related

with languages) and behaviour.
2. Documents offer a quite general framework for introducing completely new behaviours

through user-defined make fragments. This includes actually generating documents, but also
simply performing an operation (in which case sometimes no real document is produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types.

The main concept of this framework is that each document to be generated or manipulated must
be associated with a "document-type" (also sometimes named "document-style"), which
corresponds to a dedicated make fragment of that name. Then, when specified in a document
statement, this make fragment will be instanciated once or several times (typically once per
source file) to construct a complete and functional make fragment, containing one main target.
Both the resulting make fragment and the make target will have the name of the constituent.

11.1 -

11.2 - How to create and install a new document style

This section presents the general framework for
designing a document generator.

1. Select a name for the document style. It should not
clash with existing ones (use the cmt show fragments
for a complete list of document types currently
defined).

22

2. A fragment exactly named after the document style
name must be installed into a subdirectory named
fragments below the cmt branch of a given package
(which becomes the provider package).

3. Optionally, two other fragments may be installed
into the same subdirectory, one of them will be the
header of the generated complete fragment, the other
will its trailer

4. It must be declared in the requirements file of the
provider package as follows:

make_fragment <fragment-name> [options...]

where options may be :

-suffix=<suffix> provide the suffix of the output files (without the dot)

-header=<header> provide another make fragment meant to be prepended to the
constituent’s make fragment.

-trailer=<trailer>
provide another make fragment meant to be appended to the
constituent’s make fragment.

-dependencies
install the automatic generation of dependencies into the
constituent’s make fragment

Once a fragment is installed and declared, it may be
used by any client package (ie a package using the
provider), and queried upon using the command

> cmt show fragment <fragment name>

which will show where this fragment is defined (ie. in
which of the used packages).

The cmt show fragments commands lists all declared
fragments.

23

If a package re-defines an already declared make
fragment, ie it provides a new copy of the fragment (possibly
with new copies of the header and the trailer), and declares it
inside its requirements file, then this package becomes the new
provider for the document style.

For building a fragment, one may use pre-defined
generic "templates" (which will be substituted when a
fragment is copied into the final constituent’s makefile).

CONSTITUENT the constituent name

CONSTITUENTSUFFIX an optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)

FILENAME the complete source file name (only including the suffix)

NAME the short source file name (without directory and suffix)

FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

OBJS

(only available in headers) the list of outputs, formed by a set of
expressions :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

Templates must be enclosed between ${ and } and will
be substituted at the generation time. Thus, if a fragment
contains the follwing text :

$(${CONSTITUENT}_output)${NAME}${SUFFIX}

then, the expanded constituent’s makefile will contain
(refering to the "tex" example)

$(MyDoc_output)doc1.ps

Which shows that make macros may be dynamically
generated.

24

[IMAGE]

The architecture of document generation.

11.3 - Examples

1. rootcint

It generates C++ hubs for the Cint interpreter in
Root.

========= rootcint ===
(src){NAME}.cc :: ${FULLNAME}
 ${rootcint} -f (src){NAME}.cc -c ${FULLNAME}
==

2. agetocxx and agetocxx_header.

It generates C++ source files (xxx.g files) from Atlas’
AGE description files.

========= agetocxx ===
output=$(${CONSTITUENT}_output)

$(output)${NAME}.cxx : $(${NAME}_cxx_dependencies)
 (echo ’#line 1 "${FULLNAME}"’; cat ${FULLNAME}) > /tmp/${NAME}.gh.c
 gcc -E -I$(output) $(use_includes) -D_GNU_SOURCE \
 cd ${output}; $(agetocxx) -o ${NAME} -ohd ${FILEPATH} \
 -ohp ${FILEPATH} /tmp/${NAME}.gh
 rm -f /tmp/${NAME}.gh /tmp/${NAME}.gh.c
 cd $(bin); $(cppcomp) $(use_cppflags) $(${CONSTITUENT}_cppflags) \
 $(${NAME}_cppflags) ${ADDINCLUDE} $(output)${NAME}.cxx
 cd $(bin); $(ar) $(${CONSTITUENT}lib) ${NAME}.o; /bin/rm -f ${NAME}.o
==

========= agetocxx_header ==================================
${CONSTITUENT}lib = $(bin)lib${CONSTITUENT}.a
${CONSTITUENT}stamp = (bin){CONSTITUENT}.stamp
${CONSTITUENT}shstamp = (bin){CONSTITUENT}.shstamp

${CONSTITUENT} :: dirs ${CONSTITUENT}LIB
 @/bin/echo ${CONSTITUENT} ok

${CONSTITUENT}LIB :: $(${CONSTITUENT}lib) $(${CONSTITUENT}shstamp)
 @/bin/echo ${CONSTITUENT} : library ok

$(${CONSTITUENT}lib) $(${CONSTITUENT}stamp) :: ${OBJS}
 $(ranlib) $(${CONSTITUENT}lib)
 cat /dev/null >$(${CONSTITUENT}stamp)

$(${CONSTITUENT}shstamp) :: $(${CONSTITUENT}stamp)

25

 cd $(bin); $(make_shlib) $(tag) ${CONSTITUENT} \
 $(${CONSTITUENT}shlibflags); \
 cat /dev/null >$(${CONSTITUENT}shstamp)

==

It must be declared as follows :

make_fragment agetocxx -suffix=cxx -dependencies -header=agetocxx_header

12 - The tools provided by CMT

The set of conventions and tools provided by CMT is mainly
composed of :

the syntax of the requirements file,
and the general cmt user interface, available in the mgr
branch of the CMT package.

The setup script found in the CMT installation directory
actually adds its location to the definition of the standard
UNIX PATH environment variable in order to give direct
access to the main cmt user interface.

The sections below will detail the complete syntax of the
requirements file since it is the basis of most information
required to run the tools as well as the main commands
available through the cmt user interface.

12.1 - The requirements file

12.1.1 - The general requirements syntax

A requirements file is made of statements, each
describing one named configuration parameter.

26

Statements generally occupy one single line, but may
be split into several lines using the reverse-slash character (in
this case the reverse-slash character must be the last
character on the line or must be only followed by space
characters).

Each statement is composed of words separated with
spaces or tabulations.

The first word of a statement is the name of the
configuration parameter.

The rest of the statement provides the value assigned
to the configuration parameter.

Words composing a statement are separated with
space or tab characters. They may also be enclosed in quotes
when they have to include space or tab characters. Single or
double quotes may be freely used, as long as the same type of
quote is used on both sides of the word.

Special characters (tabs, carriage-return and
line-feed) may be inserted into the statements using an
XML-based convention:

tabulation <cmt:tab/>

carriage-return <cmt:cr/>

line-feed <cmt:lf/>

Comments : they start with the # character and
extend up to the end of the current line.

12.1.2 - The complete requirements syntax

27

12.2 - The concepts handled in the requirements file

12.2.1 - Meta-information : author, manager

The author and manager names

12.2.2 - package, version

The package name and version. Thes statements are
purely informational.

12.2.3 - Constituents : application, library, document

Describe the composition of a constituent. Application
and library correspond to the standard meaning of an
application (an executable) and a library, while
document provides for a quite generic and open
mechanism for describing any type of document that
can be generated from sources.

Applications and libraries are assigned a name (which
will correspond to a generated make fragment, and a
dedicated make target).

A document is first associated with a document type
(which must correspond to a previously declared make
fragment). The document name is then used to name a
dedicated make fragment and a make target.

Various options can be used when declaring a
constituent:

28

option validity usage

-windows applications
When used in a Windows environment,
generates a GUI-based application (rather
than a console application)

-no_share libraries do not generate the shared library

-no_static libraries
do not generate the static library (not yet
implemented)

-prototypes
applications,
libraries

do generate the prototype header files

-no_prototypes
applications,
libraries

do not generate the prototype header files

-check applications
generate a check target meant to execute the
rebuilt application

-group=group-name any
install the constituent within this group
target

-suffix=suffix
applications,
libraries

provide a suffix to names of all object files
generated for this constituent (see 1 below)

-import=package
applications,
libraries

explicitly import for this constituent the
standard macros from a package that has
the -no_auto_imports option set

variable-name=variable-value any
define a variable and its value to be given to
the make fragment (see 2 below)

1. When several constituents need to share source files,
(a typical example is for building different libraries
from the same sources but with different compiler
options), it is possible to specify an optional output
suffix with the -suffix=<suffix> option. With this
option, every object file name will be automatically
suffixed by the character string "<suffix>", avoiding
name conflicts between the different targets, as in the
following example:

library AXt -suffix=Xt *.cxx
library AXaw -suffix=Xaw *.cxx

29

2. It’s possible to specify in the list of parameters one or
more pairs of variable-name=variable-value (without
any space characters around the "=" character),
such as in the next example:

make_fragment doc_to_html (1)

document doc_to_html Foo output=FooA.html FooA.doc (2) (3)

1. This makefile fragment is meant to contain some
text conversion actions and defines a document
type named doc_to_html.

2. This constituent exploits the document type
doc_to_html to convert the source FooA.doc into
an html file.

3. The user defined template variable named output
is specified and assigned the value FooA.html. If
the fragment doc_to_html contains the string
${output}, then it will be substituted to this value.

12.2.4 - Groups

Groups permit the organization of the constituents that
must be consistently built at the same development
phases or with similar constraints.

Each group is associated with a make target (of the
same name) which, when used in the make command,
selectively rebuilds all constituents of this group.

The default group (into which all constituents are
installed by default) is named all, therefore, running
make without argument, activates the default target (ie.
all).

30

As a typical usage of this mechanism, one may
examplify the case in which one or several constituents are
making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might
require a controled re-build. This is especially useful for
having these constituents only rebuilt on demand rather than
rebuilt automatically when the default make command is run.

One could, for instance specify within the requirements
file :

other constituents without group specification...

library Foo-objy -group=objy <sources making use of Objectivity>

application FooGUI -group=graphics <sources making use of Qt>

(Beware of the position of the -group option which must
be located after the constituent name. Any other position
will be misunderstood by CMT)

Then, running gmake all would only rebuild the
un-grouped constituents, whereas running

> gmake objy
> gmake graphics

in the context of the Foo package would rebuild objy
related or graphics related constituents.

12.2.5 - Languages

Some computer languages are known by default by
CMT (C, C++, Fortran77, Java, lex, yacc). However it is
possible to extend this knowledge to any other langage.

We consider here languages that are able to produce
object files from sources.

31

Let’s take an example. We would like to install support
for Fortran90. We first have to declare this new
language support to CMT within the requirements file
of one of our packages (Notice that it’s not at all required to
modify CMT itself since all clients of the selected
package will inherit the knowledge of this language).

The language support is simply named fortran90 and is
declared by the following statement:

language fortran90 \
 -suffix=f90 -suffix=F90 \ [1]
 -linker=$(f90link) \ [2]
 -preprocessor_command=$(ppcmd)

1. The recognized suffixes for source files will be f90
and F90

2. The linker command used to build a Fortran90
application is described inside the macro named
f90link (which must defined in this requirements file
but which can also be overridden by clients)

The language support being named fortran90, two
associated make fragments are expected, one under the
name fortran90 (for building application modules), the
other with the name fortran90_library (for modules
meant to be archived), both without extension.

These two fragments should be installed in the
fragments sub-directory of the cmt/mgr branch of our
package.

Due to the similarity of the example to fortran77, we
may easily provide the expected fragments simply by
copying the f77 fragments found in CMT (thus the
fragments ${CMTROOT}/fragments/fortran and
${CMTROOT}/fragments/fortran_library

32

These fragments make use of the fcomp macro, which
holds the fortran77 compiler command (through the for
macro).

macro for "f77" \
...
macro fcomp "$(for) -c $(fincludes) $(fflags) $(pp_fflags)"

We therefore simply replace these macros by new
macros named f90comp and f90, defined as follows:

macro f90 "f90"
...
macro f90comp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

Some languages (this has been seen for example in the
IDL generators in Corba environments) do provide
several object files from one unique source file. It is
possible to specify this feature through the (repetitive)
-extra_output_suffix option like in:

language idl -suffix=idl -fragment=idl -extra_output_suffix=_skel

where, in this case, two object files are produced for
each IDL source file, one named <name>.o the other
named <name>_skel.o.

12.2.6 - Symbols : alias, set, set_append, set_prepend, set_remove,
macro, macro_append, macro_prepend, macro_remove,
macro_remove_all, path, path_append, path_prepend,
path_remove

The alias keyword is translated into a shell alias
definition,

The set keyword is translated into an environment
variable definition.

33

The macro keyword is translated into a make’s macro
definition.

The path keyword is translated into a path-like
environment variable, which is supposed to be composed of
search paths separated with colon characters (’:’). However,
its highly recommended to construct such a variable by
iteratively concatenate individual items one by one using
path_append or path_prepend

Variants of these keywords are also provided for
modifying already defined symbols. This generally happens
when a package needs to modify an inherited symbol (ie.
which has been already defined by a used package). Through
these keywords (set_append, set_prepend, set_remove,
macro_append, macro_prepend, macro_remove,
macro_remove_all, path_append, path_prepend,
path_remove) one can append or prepend a text to the
existing symbol value or remove a part from it. The
path_remove keyword removes all individual search
paths that contain the specified sub-string.

The translations occur while running either the setup
scripts (for alias, set or path) or the make command (for
macro).

All these definitions follow the same pattern:

symbol-type symbol-name default-value [tag value ...]

The symbol-name identifies the symbol for modification
operations. The default-value is optionally followed by a
set of tag/value pairs, each representing an alternate
value for this symbol.

34

The tag is used to select one alternate value to replace
the default value, when one of the following condition is met:

It matches the value of the CMTSITE environment
variable (or registry)
It matches the value provided by the uname Unix
command (when available)
It matches the value of the CMTCONFIG
environment variable (or registry)
It matches the value specified in the -tag=tag-list
argument to the cmt command.
It matches one user defined tag (see the tag keyword)
which itself is associated with a matching tag (Note
that this is a recursive definition).

Examples of such definition are :

package CMT

set CMTCC "cc" \
 HP-UX "cc -Aa +z -D_HPUX_SOURCE"

public

macro cflags "-g" \
 HP-UX "-g -Aa +z -D_HPUX_SOURCE" \
 hp700_ux101 "-g -fpic -ansi" \
 alpha "-g -std1" \
 alphat "-g -std1 -DCTHREADS" \
 insure "-g -Zuse -std1" \
 AIX "-g -D_ALL_SOURCE -D_BSD"

macro cppflags "-g" \
 HP-UX "-g -Aa +z" \
 hp700_ux101 "-g -fpic"

macro fflags "-g"

macro src "../src/"
macro inc "../src/"
macro mgr "../cmt/"

macro SHELL "/bin/sh"

35

12.2.7 - use

Describe the relationships with other packages; the
generic syntax is :

use <package> [<version> [<root>]]

Omitting the version specification means that the most
recent version (ie. the one with highest ids) that can be
found from the serach path list will be automatically
selected.

The root specification can be relative (ie. on Unix it does
not contain a leading ’/’ character). In this case, this
prefix is systematically considered when the package is
looked for in the search path list. But it can also be
absolute (ie. with a leading ’/’ character on Unix), in
which case this path takes precedence over the standard
search path list (see CMTPATH).

Examples of such relationships are :

Packages installed in the default root :
use OnX v5r2
use CSet v2r3
use Gb v2r1

A package installed in a root one step below the root :
use CS v3r1 virgo

Back to the default root :
use Cm v7r3

Get the most recent version of CERNLIB
use CERNLIB

By default, a set of standard macros, which are expected
to be specified by used packages, is automatically
imported from them (see the detailed list of these
macros). This automatic feature can be discarded using
the

36

-no_auto_imports option to the use statement, or
re-activated using the
-auto_imports. When it is discarded, the macros will not
be transparently inherited, but rather, each individual
constituent willing to make use of them will have to explicitly
import them using the -import=<package> option.

12.2.8 - pattern, apply_pattern, ignore_pattern

Often, similar configuration items are needed over a set
of packages (sometimes over all packages of a project).
This reflects either similarities between packages or
generic conventions established by a project or a team.

Typical examples are the definition of the search path
for shared libraries (through the LD_LIBRARY_PATH
environment variable), the systematic production of test
applications, etc.

The concept of pattern proposed here implements this
genericity. Patterns may be either global, in which case
they will be systematically applied onto every package,
or local (the default) in which case they will be applied
on demand only by each package.

The general principle of a pattern is to associate a
templated (set of) cmt statement(s) with the pattern
name. Then every time the pattern is applied, its
associated statements are applied as if they were directly
specified in the requirements file, replacing the template
with its current value. If several statements are to be
associated with a given pattern, they will be separated
with the " ; " separator pattern (beware of really
enclosing the ";" between two space characters).

37

Pattern templates are names enclosed between the ’<’
and ’>’ characters. A set of predefined templates are
automatically provided by CMT:

package the name of the current package

PACKAGE
the name of the current package in upper
case

version the version tag of the current package

path the access path of the current package

Then, in addition, user defined templates can be
installed within the pattern definitions. Their actual value will
be provided as arguments to the apply_pattern statement.

User defined templates that have not been assigned a
value when the pattern is applied are simply ignored.

Some examples:

1. Changing the standard include search path.

The standard include path is set by default to
${<package>_root}/src. However, often projects need
to override this default convention, and typical
example is to set it to a branch named with the
package name. This convention is easily applied by
defining a pattern which will apply the include_path
statement as follows:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a package named PackA will expand
this pattern as follows:

include_path ${PackA_root}/PackA/

38

2. Providing a value to the LD_LIBRARY_PATH
environment variable

On some operating systems (eg. Linux), shared
library paths must be explicited, through an
environment variable. The following pattern can
automate this operation:

pattern ld_library_path \
path_remove LD_LIBRARY_PATH "/<package>/" ; \
path_append LD_LIBRARY_PATH ${<PACKAGE>ROOT}/${CMTCONFIG}

In this example, the pattern was not set global, so
that only packages actually providing shared
libraries would be concerned. These packages will
simply have to apply the pattern as follows:

apply_pattern ld_library_path

The schema installed by this pattern provides first a
cleanup of the LD_LIBRARY_PATH environment
variable and then the new assignment. This choice is
useful in this case to avoid conflicting definitions
from two different versions of the same package.

3. Installing a systematic test application in all packages

Quality assurance requirements might specify that
every package should provide a test program. One
way to enforce this is to build a global pattern
declaring this application. Then every make
command would naturally ensure its actual presence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern
(<other_sources>) permits the package to specify
extra source files to the test application (the pattern

39

assumes at least one source file <package>test.cxx).

12.2.9 - branches

Describe the specific directory branches to be added
while configuring the package.

branches <branch-name> ...

These branches will be created (if needed) at the same
level as the cmt branch. Typical examples of such
required branches may be include, test or data.

12.2.10 - build_strategy, version_strategy

Users can control the behaviour of CMT through a set
of strategy specifications. The current implementation
only provides such control over two mechanisms :

the way version tags are interpreted and compared
to each other.

The following keywords are available:

best_fit
This is the default behaviour. Version tags truely consider major
ids, minor ids and patch ids with their complete backward
compatibility semantics

best_fit_no_check
Same as best_fit except that different major ids are not seen as
incompatible. The greatest id (for major, minor and patch ids) is
always selected

first_choice The first version tag specified in the use chain is selected

last_choice The last version tag specified in the use chain is selected

keep_all Internal use only : all referenced versions are kept

the way makefile fragments for applications and
libraries are generated.

40

Currently this only concerns the automatic
generation of prototype header files for C source files. Thus
only one keyword is possible : prototypes (and its
opposite no_prototypes), the default CMT behaviour
being to generate prototype headers.

12.2.11 - setup_script, cleanup_script

Specify user defined configuration scripts, which will be
activated together with the execution of the main setup
and cleanup scripts.

The script names may be specified without any access
path specification, in this case, they are looked for in the
cmt or mgr branch of the package itself. They may also
be specified without any .csh or .sh suffix, the
appropriate suffix will be appended accordingly when
needed. Therefore, when such a user configuration
script is specified, CMT expects that the corresponding
shell scripts actually exist in the appropriate directory
(the cmt branch by default) and is provided in whatever
format is appropriate (thus suffixed by .csh and/or .sh).

12.2.12 - include_path

Override the specification for the default include search
path, which is internally set to ${<package>_root}/src.

Specifying the value none (a reserved CMT keyword)
means that no default include search path is expected
from CMT, and thus no -I compiler option will be
generated by default (generally this means that user
include search paths should be specified via include_dirs
instead).

41

12.2.13 - include_dirs

Add specifications for non-standard include access
paths.

12.2.14 - make_fragment

This statement specifies a specialized makefile fragment,
used as a building brick to construct the final makefile
fragment dedicated to build the constituents.

There are basically three categories of such fragments :
1. some are provided by CMT itself (they correspond to

its internal behaviour)
2. others handle the language support
3. and the last serve as specialized document

generators.

The fragments defined in CMT can be:

those used to construct the application or library
constituents. Their semantic is standardized (they are
all associated with a language statement in the CMT
requirements file).

c c_library cpp cpp_library lex lex_library fortran
fortran_library yacc yacc_library jar jar_header
java java_copy java_header check_java
cleanup_java

those used internally by CMT as primary building
blocks for assembling the makefile. (Generally
developers should not see them).

cleanup_objects application make_setup_nmake
constituent application_header constituents_header
buildproto protos_header os9_header dependencies

42

check_application dependencies_and_triggers
check_application_header document_header library cleanup
library_header cleanup_application library_no_share
cleanup_header make_header make_setup cleanup_library
make_setup_header

some document generators which may be used if
needed, but are not mandatory:

installer installer_header readme readme_header
readme_trailer readme_use dvi tex generator
generator_header

those used to generate configuration files for
MSVisualC++:

dsp_windows_header dsw_all_project
dsw_all_project_dependency
dsw_all_project_header dsw_all_project_trailer
dsw_header dsw_project dsw_trailer dsp_all
dsp_application_header dsp_contents
dsp_library_header dsp_shared_library_header
dsp_trailer

Language fragments should provide two forms, one for
the applications (in which case they are named exactly
after the language name eg c, cpp, fortran) and the
other for the libraries (in which case they have the
_library suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++,
Fortran, Java, Lex, Yacc) is provided by CMT itself but
it is expected that projects add new languages according
to their needs. Event if the make fragment meant to be
the implementation of a language support is declared,
the language support itself must be declared too, using

43

the language statement

All make fragments are provided as (suffixless) files
which must be located in the fragments sub-directory
inside the cmt/mgr branch of one package. They must also be
declared in the requirements file (through the
make_fragment statement) so as to be visible.

A package declaring, and implementing a make
fragment may override a fragment of the same name when it
is already declared by a used package. This implies in
particular that any package may freely override any
make fragment provided by CMT itself (although in this
case a deep understanding of what the original fragment does
is recommended).

Makefile fragments may take any form convenient to
the document style, and some special pre-built templates (see
the appendix) can be used in their body to represent
running values, meant to be properly expanded at actual
generation time :

CONSTITUENT the constituent name

FULLNAME the full source path

FILENAME the source file name without its path

NAME
the source file name without its path and
suffix

FILESUFFIX the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

12.2.15 - public, private

Introduce a section for public or private symbols (meant
to be implemented as environment variables or aliases

44

in a Unix environment or as logical names or symbols in
a VMS one). Macros to be used within makefiles can
also be defined at this level. Public symbols are meant to be
exported to any external user of the package whereas private
ones are only defined for the package developper.
Currently the selection between these two categories is done
when the setup script is executed : if it is executed while
actually being in the cmt branch of the package, the
developper category is assumed. If the script is executed from
another directory the user category is assumed.

12.2.16 - tag

Provide tag definitions.

A tag is a token which can be used to select particular
values of symbols. Generally a tag need not being
explicitly declared, since the reference to it will declare
the tag automatically. However, tags may be used to
name a particular association of several other tags. In
this case, this association must be declared within a
requirements file as follows :

tag <association-tag-name> <tag1> <tag2> ...

eg:

tag Linux-gcc Linux gcc

This definition implies that when Linux-gcc is true, then
both Linux and gcc are true.

This can be exploited to trigger via only one tag, the
activation of several individual tags, each signing a
particular condition (in our example the debug
condition and the Linux environment).

45

However, it is always possible to dynamically associate
several tags by using the tag-list-style of arguments to
the -tag=<tag-list> options to the cmt command driver (such
as in cmt setup -tag=Linux,debug)

Tags or associations of tags are propagated using the
-tag=<tag-list> options to the cmt command driver, but the
Make command can also accept them through the
conventional macros $(tag) and $(extra_tags). However,
the $(tag) macro itself can only accept one value (instead
of a list), and therefore in order to give a list of additional tags,
one should use the $(extra_tags) (such as in gmake
tag=Linux extra_tags=debug)

Finally, running the setup script (through the source
setup.[c]sh or call setup.bat command) can also receive
tag specifications using the -tag=tag-list options.

12.3 - The general cmt user interface

This utility (a shell script combined with a C application)
provides a centralised access to various commands to the
CMT system. The first way to use cmt is to run it without
argument, this will print a minimal help text showing the
basic commands and their syntax :

> cmt command [option...]
command :
 broadcast [-select=list] [-exclude=list] [-local] [-depth=n]
 [-global] [-begin=pattern]
 [-all_packages] <command> : apply a command to [some of] the used packages
 build <key> : build various components :
 constituent_makefile : generate Makefile
 constituents_makefile : generate constituents.make
 dependencies : generate dependencies
 library_links : build symbolic links towards all imported libraries
 make_setup : build a compiled version of setup scripts
 msdev : generate MSDEV files
 os9_makefile : generate Makefile for OS9
 prototype : generate prototype file
 readme : generate README.html
 tag_makefile : generate tag specific Makefile

46

 check <key> : perform various checks
 configuration : check configuration
 files <old> <new> : compare two files and overrides <old> by <new> if different
 version <name> : check if a name follows a version tag syntax
 check_files <old> <new> : compare two files and overrides <old> by <new> if different
 checkout : perform a cvs checkout over a CMT package
 co : perform a cvs checkout over a CMT package
 cleanup [-csh|-sh|-bat] : generate a cleanup script
 config : generate setup and cleanup scripts
 create <package> <version> [<path>] : create and configure a new package
 filter <in> <out> : filter a file against CMT macros and env. variables
 help : display this help
 lock : lock the current package
 lock <package> <version> [<path>] : lock a package
 remove <package> <version> [<path>] : remove a version of a package
 remove library_links : remove symbolic links towards all imported libraries
 run <command> : apply a command
 setup [-csh|-sh|-bat] : generate a setup script
 show <key> : display various infos on :
 author : package author
 branches : added branches
 clients : package clients
 constituent_names : constituent names
 constituents : constituent definitions
 uses : the use tree
 fragment <name> : one fragment definition
 fragments : fragment definitions
 groups : group definitions
 languages : language definitions
 macro <name> : a formatted macro definition
 macro_value <name> : a raw macro definition
 macros : all macro definitions
 manager : package manager
 packages : packages reachable from the current context
 path : the package search list
 pattern <name> : the pattern definition and usages
 patterns : the pattern definitions
 pwd : filtered current directory
 set_value <name> : a raw set definition
 set <name> : a formatted set definition
 sets : set definitions
 strategies : all strategies (build & version)
 tags : all defined tags
 uses : used packages
 version : version of the current package
 versions <name> : visible versions of the selected package

 system : display the system tag
 unlock : unlock the current package
 unlock <package> <version> [<path>] : unlock a package
 version : version of CMT

 cvstags <module> : display the CVS tags for a module
 cvsbranches <module> : display the subdirectories for a module
 cvssubpackagess <module> : display the subpackages for a module
 global option :
 -quiet : don’t print errors
 -use=<p>:<v>:<path> : set package version path
 -pack=<package> : set package
 -version=<version> : set version
 -path=<path> : set root path
 -f=<requirement-file> : set input file
 -e=<statement> : add a one line statement
 -home=<directory> : find a home requirements file there
 -tag=<tag-list> : select specific tag(s)

The following sections present the detail of each available
command.

47

12.3.1 - cmt broadcast [-select=list] [-exclude=list] [-local] [-global]
[-begin=pattern] [-depth=<n>] [-all_packages] <shell command>

This command tries to repeatedly execute a shell
command in the context of each of the used package of
the current package. The used packages are listed using
the cmt show uses command, which also indicates in
which order the broadcast is performed. When the
all_packages option, the set of packages reached by the
broadcast is rather the same as the one shown by the
cmt show packages command, ie all CMT packages and
versions available throught the current CMTPATH list.

Typical uses of this broadcast operation could be:

csh> cmt broadcast cmt config
csh> cmt broadcast - gmake
csh> cmt broadcast ’(cd ../; cvs -n update)’

The loop over used packages will stop at the first error
occurence in the application of the command, except if
the command was preceded by a ’-’ (minus) sign
(similarly to the make convention).

It is possible to specify a list of selection or exclusion
criteria set onto the package path, using the following
options, right after the broadcast keyword. These
selection criteria may be combined (eg one may combine
the begin and select modifiers)

sh> cmt broadcast -begin=Cm gmake (1)
sh> cmt broadcast -select=Cm gmake (2)
sh> cmt broadcast -select=’/Cm/ /CSet/’ gmake (3)
sh> cmt broadcast -select=Cm -exclude=Cmo gmake (4)
sh> cmt broadcast -local gmake (5)
sh> cmt broadcast -depth=<n> gmake (6)
sh> cmt broadcast -all_packages gmake (7)

48

According to the option, the loop will only operate onto:

1. the first package which path contains the string
"Cm", and then all other reachable packages (in case
other specifiers are used)

2. the packages which path contains the string "Cm"
3. the packages which path contains either the string

"/Cm/" or the string "/CSet/"
4. the packages which path contains the string "Cm",

but which does not contain the string "Cmo"
5. the packages at the same level as the current package
6. the packages at the same level as the current package

or among the <n> first entries in the CMTPATH list
7. all the packages and versions currently available

through the CMTPATH list

12.3.2 - cmt build <option>

All build commands are generally meant to change the
current package (some file or set of files is generated).
Therefore a check against conflicting locks (ie. a lock
owned by another user) is performed by all these
commands prior to execute it.

[-nmake] constituent_makefile <constituent-name>

This command is internally used by CMT in the
standard Makefile.header fragment. It generates a
specific makefile fragment (named
<constituent-name>.make) which is used to re-build
this fragment.

All such constituent fragments are automatically
included from the main Makefile.

49

Although this command is meant to be used
internally (and transparently) by CMT when the
make command is run, a developer may find useful in very
rare cases to manually re-generate the constituent fragment,
using this command.

The -nmake option (which must precede the
command) provides exactly the same features but in a
Windows/nmake context. In this case, all generated makefiles
are suffixed by .nmake instead of .make for Unix
environments. The main makefile is expected to be named
NMake and the standard header is named
NMakefile.header

[-nmake] constituents_makefile

This command is internally (and transparently) used
by CMT in the standard Makefile.header fragment,
and when the make command is run, to generate a specialized
make fragment containing all "cmt build
constituent_makefile" commands for a given package.

The -nmake option (which must precede the
command) provides exactly the same feature but in a
Windows/nmake context. In this case, all generated makefiles
are suffixed by .nmake instead of .make for Unix
environments. The main makefile is expected to be named
NMake and the standard header is named
NMakefile.header

dependencies

This command is internally (and transparently) used
by CMT from the constituent specific fragment, and
when the make command is run, to generate a fragment
containing the dependencies required by a source file.

50

This fragment contains a set of macro definitions
(one per constituent source file), each containing the set of
found dependencies.

library_links

This command builds a local symbolic link towards
all exported libraries from the used packages. A package
exports its libraries through the <package>_libraries
macro which should contain the list of constituent names
corresponding to libraries that must be exported.

library Foo ...
library Foo-utils ...
...
macro Foo_libraries "Foo Foo-utils"
...

The corresponding cmt remove library_links
command will remove all these links.
make_setup

This command is internally (and transparently) used
by CMT from the standard Makefile.header
fragment, and when the make command is run, to
generate another fragment containing all platform
(or tag) specific macro definitions.

One copy of this fragment (named <tag>.make) is
created per flavour of tag used at build time. The tag
considered in this operation is either the default tag
value (obtained from the CMTCONFIG environment
variable) or specified to the make command using
the -tag=<tag> option)

This tag specific fragment represents the actual
context that was considered at the most recent make
activation. It is automatically rebuilt when one of the

51

used requirements is modified.

msdev

This command generates workspace (.dsw) and
project (.dsp) files required for the MSDev tool.

os9_makefile

This command generates external dedicated makefile
fragments for each individual component of the package (ie.
libraries or executable applications) to be used in OS9 context.
It generates specific syntaxes for the OS9 operating
systems.

The output of this tool is a set of files (named with
the components’ name and suffixed by .os9make)
that are meant to be included within the main
Makefile that the developer has to write anyhow.

The syntax of the cmt build os9_makefile utility is as
follows :

sh> cmt build os9_makefile <package>

prototype <source-file-name>

This command is internally (and transparently) used
by CMT from the constituent specific fragment, and
when the make command is run, to generate
prototype header files from C source files.

The prototype header files (named <file-name>.ph)
will contain prototype definitions for every global
entry point defined in the corresponding C source
file.

52

The effective activation of this feature is controled by
the build strategy of CMT. The build strategy may
be freely and globally overridden from any
requirements file, using the build_strategy cmt
statement, providing either the "prototypes" or the
"no_prototypes" values.

In addition, any constituent may locally override this
strategy using the "-prototypes" or "-no_prototypes"
modifiers.

readme

This command generates a README.html file into
the cmt branch of the referenced package. This html file will
include

a table containing URLs to equivalent pages for
all used packages,
a copy of the local README file (if it exists).

tag_makefile

This command produces onto the standard output,
the exhaustive list of all macros controled by CMT,
ie. those defined in the requirements files as well as
the standard macros internally built by CMT, taking
into account all used packages.

12.3.3 - cmt check configuration

This command reads the hierarchy of requirements files
referenced by a package, check them, and signals syntax
errors, version conflicts or other configuration
problems.

53

An empty output means that everything is fine.

12.3.4 - cmt check files <reference-file> <new-file>

This command compares the reference file to the new
file, and substitues the reference file by the new one if
they are different.

If substitution is performed, a copy (with additional
extension sav) is produced.

12.3.5 - cmt checkout ...

See the paragraph on how to use cvs together with
CMT, and more specifically the details on checkout
oprations.

12.3.6 - cmt co ...

This is simply a short cut to the cmt checkout command.

12.3.7 - cmt cleanup [-csh|-sh]

This command generates (to the standard output) a set
of shell commands (either for csh or sh shell families)
meant to unset all environment variables specified in the
requirements files of the used packages.

This command is internally used in the cleanup.[c]sh
shell script, itself generated by the cmt config command.

12.3.8 - cmt config

This command (re-)generates the setup scripts and the
manimal Makefile (when it does not exist yet or have
been lost).

54

csh> cd ~/Packages/Foo/v1/cmt
csh> cmt config

To be properly operated, one must already be in the cmt
or mgr branch of a package (where the requirements
file can be found).

This command also performs some cleanup operations
(eg. removing all makefile fragments previously
generated). Generally speaking, one may say that this
command restores the CMT-related files to their
original state (ie before any document generation)

The situations in which it is useful to run this command
are:

When the setup or cleanup scripts have been lost
When the minimal Makefile have been lost
When the version of CMT is changed
After restoring a package from CVS
After having manually changed the directory
structure of a package (using a manual copy
operation, or renaming one of its parent directory,
such as the version directory)

12.3.9 - cmt create <package> <version> [<area>]

This command creates a new package or a new version
of a package

csh> cmt config Foo v1

or:

csh> cmt config Foo v1 ~/dev

55

In the first mode (ie. without the area argument) the
package will be created in the default path.

The second mode explicitly provides an alternate path.

A minimal configuration is installed for this new
package:

An src and an cmt branch
A very minimal requirements file
The setup and cleanup shell scripts
The minimal Makefile

12.3.10 - cmt filter <in-file> <out-file>

This command reads <in-file>, substitutes all occurences
of macro references (taking either the form
$(macro-name) or ${macro-name}) by values deduced
from corresponding macro specifications found in the
requirements files, and writes the result into <out-file>.

This mechanism is widely internally used by CMT,
especially for instanciating make fragments. Then, users
may use it for any kind of document, including maual
generation of MSDev configuration files, etc...

12.3.11 - cmt help

This command shows the list of options of the cmt
driver.

12.3.12 - cmt lock
cmt lock [<package> <version> [<area>]]

This command tries to set a lock onto the current
package (or onto the specified package). This consists in

56

the following operations:

1. Check if a conflicting lock is already set onto this
package (ie. a lock owned by another user).

2. If not, then install a small text file named lock.cmt
into the cmt/mgr branch of the package, containing
the following text:

locked by <user-name> date <now>

3. Run a shell command described in the macro named
lock_command meant to install physical locks onto
all files for this version of this package. A typical
definition for this macro could be:

macro lock_command "chmod -R a-w ../*" \
 WIN32 "attrib /S /D +R ../*"

12.3.13 - cmt remove <package> <version> [<area>]

This command removes one version of the specified
package. If the package does not contain a conflicting
lock, and if the user is granted enough access rights to
remove files, all files below the version directory will be
definitively removed. Therefore this command should
be used with as much care as possible.

The arguments needed to reach the package version to
be removed are the same as the ones whic had been used
to create it.

If the removed version is the last version of this
package, (and only if its directory is really empty) the
package directory itself will be deleted.

57

12.3.14 - cmt remove library_links

This command removes symbolic links towards all
imported libraries which had been installed using the
cmt build library_links command. This command is
generally transparently executed when one runs gmake
clean

12.3.15 - cmt run shell-command

This command runs any shell command, in the context
of the current package.

This may not appear to be very useful for the current
package one is working on, but when combined with
global options -pack=package, -version=version,
-path=access-path, this gives a direct access to any
package context.

12.3.16 - cmt setup [-csh|-sh|-bat]

This command generates (to the standard output) a set
of shell commands (either for csh, sh or bat shell
families) meant to set all environment variables
specified in the requirements files of the used packages.

This command is internally used in the setup.[c]sh or
setup.bat shell script, itself generated by the cmt config
command.

12.3.17 - cmt show <option>

author
branches
clients <package> [<version>]

58

This command displays all packages that express an
explicit use statement onto the specified package. If
no version is specified on the argument list, then all uses of
that package are displayed.

constituent_names
constituents
uses
fragment <name>

This command displays the actual location where the
specified make fragment is currently found by CMT,
taking into account possible overridden definitions.

fragments
groups

This command displays all groups possibly defined in
constituents of the current package (using the
-group=<group-name> option).

languages
macro <name>

This command displays a quite detailed explanation
on the value assigned to the macro specified as the additional
argument. It presents in particular each intermediate
assignments made to this macro by the hierarchy of used
statements, as well as the final result of these assignment
operations.

By adding a -tag=<tag> option to this command, it is
possible to simulate the behaviour of this command in another
context, without actually going to a machine or an operating
system where this configuration is defined.

59

macro_value <name>

This command displays the raw value assigned to the
macro specified as the additional argument. It only presents
the final result of the assignment operations performed by
used packages.

By adding a -tag=<tag> option to this command, it is
possible to simulate the behaviour of this command in another
context, without actually going to a machine or an operating
system where this configuration is defined.

The typical usage of the show macro_value command
is to get at the shell level (rather than within a
Makefile) the value of a macro definition, providing
means of accessing them (quite similarly to an environment
variable) :

csh> set compiler=‘cmt show macro_value cppcomp‘
csh> ${compiler}

macros

This command extracts from the requirements file(s)
the complete set of macro definitions, selects the
appropriate tag definition (or uses the one provided
in the -tag=<tag> option) and displays the effective
macro values corresponding to this tag.

This command is typically used to show the effective
list of macros used when running make and can be
also used to build, as an argument list, the make
command as follows :

csh> eval make ‘cmt show macros‘

60

This use of cmt show macros is directly installed
within the default target provided in the standard
Makefile.header file. Therefore if this file is included
into the package’s Makefile, macro definitions
provided in the requirements files (the one of the
currently built package as well as the ones of the
used packages) will be expanded and provided as
arguments to make.

By adding a -tag=<tag> option to this command, it is
possible to simulate the behaviour of this command
in another context, without atcually going to a
machine or an operating system where this
configuration is defined.

manager
packages

This command displays all packages (and all versions
of them) currently reachable through the current
access path definition (which can be displayed using
the cmt show path command).

path

This command displays the complete and effective
access path currently defined using any possible
alternate way.

pattern <name>

This command displays how and where the specified
pattern is defined, and which packages do apply it.
patterns

61

This command displays all pattern definitions.
pwd

This command displays a filtered version of the
standard pwd unix command. The applied filter
takes into account the set of aliases installed in the standard
configuration file located in
${CMTROOT}/mgr/cmt_mount_filter.

This configuration file contains a set of path aliases
(one per line) each proposing a translation for non-portable
file paths (imposed by mount constraints on some contexts).

set_value <name>
set <name>
sets
strategies
tags
uses

This command displays a quite comprehensive and
detailed explanation of the hierarchy of use statements, with
the effective selection made between possibly compatible
versions.

use CMT v1r10 /lal
use Cm v7r5
use CSet v2r5

Selection :
use CSet v2r5 /lal
use Cm v7r5 /lal
use CMT v1r10 /lal

The -quiet option may be used to remove from the
output, the comments (beginning with the #
character), so as to display a simple list of used
packages, starting from the deepest uses.

62

version

This command displays the version tag of the current
package.

versions <name>

This command displays the reachable versions of the
specified package, looking at the current access paths.

12.3.18 - cmt system

This command displays the current value assigned by
default to the CMTCONFIG environment variable.

12.3.19 - cmt unlock
cmt unlock [<package> <version> [<area>]]

This command tries to remove a lock from the current
package (or from the specified package). This consists in
the following operations:

1. Check if a conflicting lock is already set onto this
package (ie. a lock owned by another user).

2. If not, then remove the text file named lock.cmt from
the cmt/mgr branch of the package.

3. Run a shell command described in the macro named
unlock_command meant to remove physical locks
from all files for this version of this package. A
typical definition for this macro could be:

macro unlock_command "chmod -R g+w ../*" \
 WIN32 "attrib /S /D -R ../*"

63

12.3.20 - cmt version

This command shows the current verion of CMT,
including (if applicable) the actual patch level. This
always corresponds to the corresponding CVS tag
assigned to CMT sources.

12.3.21 - cmt cvstags <module>

(see the section on how tu use CVStogether with CMT for
more details on this command)

12.3.22 - cmt cvsbranches <module>

12.3.23 - cmt cvssubpackages <module>

12.4 - The setup and cleanup scripts

They are produced by the cmt config command and their
contents is built according to the specifications stored in
the requirements file.

One flavour of these scripts is generated per shell family
(csh, sh and bat), yielding the following scripts :

setup.csh
setup.sh
setup.bat
cleanup.csh
cleanup.sh

The main sections installed within a setup script are :

1. Connection to the current version of the CMT package.
2. Setting the set of user defined public variables specified

in the requirements file (including those defined by all
used packages). This is achieved by running the cmt

64

setup utility into a temporary file and running this
temporary file.

3. Activation of the user defined setup and cleanup scripts
(those specified using the setup_script and
cleanup_script statements).

It should be noted that these setup scripts do not contain
machine specific information (due to the online use of the
cmt setup command). Therefore, it is perfectly possible to
use the same setup script on various platforms (as soon as
they share the directories) and this also shows that the
configuration operation (the cmt config command) is
required only once for a set of multiple platforms sharing a
development area.

12.5 - cmt build prototype

This command is only provided for development of C
modules. It generates a C header file containing the set of
prototype statements for all public functions of a given
module. Its output is a file with the same name as the input
source (given as the argument) and suffixed with .ph.

The generated prototype header file is meant to be
included whereever it is needed (in the module file itself for
instance).

A typical example of the use of cmt build prototype could
be :

csh> cd ../src
csh> cmt build prototype FooA.c
Building FooA.ph

Running cmt build prototype will only produce a new
prototype header file if the output is actually different from

65

the existing one (if it exists) in order to avoid confusing
make checks.

The effective use of this facility (which may not be
appropriate in all projects) is controlled by one option of the
build strategy, which can take one of the two values:

build_strategy prototypes
build_strategy no_prototypes

In addition to this global strategy specification, each
application or library may individually override it using
the -prototypes or -no_prototypes options.

Lastly, the actual behaviour of the prototype generator is
defined in the standard make macro build_prototype
(which default to call the cmt build prototype command,
allowing a user defined behavious to this feature)

13 - Using cvs together with CMT

Nothing special is apriori required by CMT with respect to
the use of CVS. Nevertheless, one may advertize some well
tested conventions and practices which turned out to ensure a
good level of consistency between the two utilities.

Although none of these are required, the cmt general
command provides a few utilities so as to simplify the use of
these practices. It should be noted that the added features
provided by cmt rely on the possibility to query CVS about the
existing CMT packages and the possible tags setup for these
packages. CVS does not by default permit such query
operations (since they require to scan the physical CVS
repository). Therefore CMT provides a hook to CVS (based
upon standard CVS features - not patches) for this. This hook

66

can be installed by the following procedure (see sections below
for more details):

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

13.1 - Importing a package into a cvs repository

Generally, everything composing a package (below the
version directory and besides the binary directories) is
relevant to be imported. Then choosing a cvs module name
is generally done on the basis of the package name. Taking
the previous examples, one could import the Foo package
as follows :

csh> cd/Foo/v1
csh> cvs import -m "First import" -I alpha -I hp9000s700 Foo LAL v1

In this example,

we have ignored the currently existing binary
directories (here alpha and hp9000s700)
the cvs module name is identical to the package name
(Foo)
the original symbolic insertion tag is identical to the
version identifier (v1)

The choice of the module name can generally be identical
to the package name. However, some site specific
management issues may lead to different choices (typically,
a top directory where groups of packages are gathered may
be inserted).

Conversely, using symbolic tags identical to version
identifiers appears to be a very good practice. The only
constraint induced by cvs is that the symbolic tags may not

67

contain dot characters (’.’), whereas no restriction exist
from CMT itself. Thus version identifiers like v3r2 will be
preferred to the v3.2 form.

13.2 - Checking a package out from a cvs repository

Assuming the previous conventions on module name and
version identifier have been selected when importing a
package, the following operations will naturally intervene
when one need to check a package out (typically to work on
it or to install it on some platform) :

csh> cd <some root> (1)
csh> mkdir Foo (2)
csh> cd Foo
csh> cvs checkout -d v1 Foo (3)
csh> cd v1/cmt
csh> cmt config (4)
csh> source setup.csh (5)
csh> [g]make (6)

1. one always have to select a root directory where to settle
down this copy of the extracted package. This may
either be the so-called default root or any other
appropriate directory. In both cases, the next cmt config
operation will automatically take care of this effective
location.

2. creating a base directory with the package name is
mandatory here, and is not taken into account by cvs
during the chaeckout operation since one wants to insert
the version branch in between.

3. the package is checked out into a directory named with
the expected version identifier exactly corresponding to
the version currently stored in the cvs repository.

4. then using the cmt config command (from the cmt
branch) will update the setup scripts against the
requirements file and the effective current package

68

location.
5. using this updated version of the setup script provides

the appropriate set of environment variables
6. lastly, rebuilding the entire package is possible simply

using the [g]make command.
The actions decribed just above (from number 2 to number
4 included) can also be performed using the cmt checkout
command.

> cd <some work area>
> cmt checkout [modifier ...] <package> ...

modifier :
 -l Do not process used packages (default).
 -R Process used packages recursively.
 -r rev Check out version tag. (is sticky)
 -d dir Check out into dir instead of module name.
 -o offset Offset in the CVS repository
 -n Simulation mode on
 -v Verbose mode on
 -help Print this help

Thus the previous example would become:

csh> cd <some root>
csh> cmt checkout Foo
csh> cd Foo/v1/cmt
csh> source setup.csh
csh> [g]make

13.3 - Querying CVS about some important infos

It is possible, using the commands :
cmt cvstags <module>
cmt cvsbranches <module>
cmt cvssubpackages <module>

to query the CVS repository about the existing tags
installed onto a given CVS module, the subdirectories and
the subpackages (in the CMT meaning, i.e. when a
requirements file exists).

69

> cmt cvstags Cm
v7r6 v7r5 v7r4 v7r3 v7r1 v7
> cmt cvstags Co
v3r7 v3r6 v3

One should notice here that the cvstags command can give
informations about any type of module, even if it is not
managed in the CMT environment.

However, in order to let this mechanism operate, it is
required to install some elements into the physical CVS
repository (which may require some access rights into it).
This installation procedure (to be done only once in the life
of the repositiory) can be achieved through the following
command:

sh> (cd ${CMTROOT}/mgr; gmake installcvs)

However, the details of the procedure is listed below (this
section is preferably reserved for system managers and can
easily be skipped by standard users):

1. copy the cmt_buildcvsinfos2.sh shell script into the
management directory ${CVSROOT}/CVSROOT as
follows :

sh> cp ${CMTROOT}/mgr/cmt_buildcvsinfos2.sh ${CVSROOT}/CVSROOT

2. install one special statement in the loginfo
administrative file as follows :

sh> cd ...
sh> cvs checkout CVSROOT
sh> cd CVSROOT
sh> vi loginfo
...
.cmtcvsinfos $CVSROOT/CVSROOT/cmt_buildcvsinfos2.sh
sh> cvs commit -m "set up commitinfo for CMT"

70

13.4 - Working on a package, creating a new release

This section presents the way to instanciate a new release of
a given package, which happens when the foreseen
modifications will yield additions or changes to the
application programming interface of the package.

Then the version tag is supposed to be moved forward,
either increasing its minor identifier (in case of simple
additions) or its major identifier (in case of changes).

The following actions should be undertaken then :

1. understand what is the latest version tag (typically by
using the cmt cvstags command). Let’s call it old-tag.

2. select (according to the foreseen amount of changes)
what will be the next version tag. Let’s call it new-tag.

3. check the most recent version of the package in your
development area :

sh> cd <development area>
sh> cvs checkout -d <new-tag> <package>

4. configure this new release, and rebuild it :

sh> cd <new-tag>/cmt
sh> cmt config
sh> source setup.csh
sh> [g]make

13.5 - Getting a particular tagged version out of cvs

The previous example presented the standard case where
one gets the most recent version of a given package. The
procedure is only slightly modified when one wants to

71

extract a previously tagged version. Let’s imagine that the
Foo package has evolved by several iterations, leading to
several tagged releases in the cvs repository (say v2 and
v3). If the v2 release is to be used (e.g. for understanding
and fixing a problem discovered in the running version) one
will operate as follows :

csh> cd <some root>
csh> mkdir Foo
csh> cd Foo
csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt
csh> cmt config
csh> source setup.csh
csh> make

14 - Interfacing an external package with CMT

Very often, external packages (typically commercial products,
or third party software) are to be used by packages
developped in the context of the CMT environment. Although
this can obviously done simply by specifying compiler or
linker options internally to the client packages, it can be quite
powerful to interface these so-called external packages to
CMT by defining a glue package, where configuration
specifications for this external package are detailed.

Using this approach, one may :

provide a nickname for this external package,
adapt the version tag convention consistently to the project,
hiding the version tag specificities of eg. commercial
packages.
provide compiler options using the the standard make
macros <package>_cflags, <package>_cppflags or
<package>_fflags,
specify a set of search paths for the include files, using the

72

include_dirs statement,
provide linker options using the the standard make macros
<package>_linkopts

Let’s consider the example of the OPACS package. This
package is provided outside of the CMT environment.
Providing a directory tree following the CMT conventions (ie.
a branch named after the version identifier, then an cmt
branch) then a requirements file, containing (among other
statements not shown for the sake of clarity) :

package OPACS

include_dirs ${Wo_root}/include ${Co_root}/include ${Xx_root}/include \
 ${Ho_root}/include ${Go_root}/include ${Xo_root}/include

public
macro OPACS_cflags "-DHAS_XO -DHAS_XM"
macro OPACS_cppflags " $(OPACS_cflags) "

macro OPACS_linkopts "$(Wo_linkopts) $(Xo_linkopts) $(Go_linkopts) \
 $(Glo_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(Htmlo_linkopts) \
 $(W3o_linkopts) $(Co_linkopts) $(X_linkopts)"

Then every package or application, client of this OPACS
package would have just to provide a use statement like :

use OPACS v3

This procedure gives the complete benefit of the use
relationships between packages (a client application
transparently inherits all configuration specifications) while
keeping unchanged the original referenced package, allowing
to apply this approach even to commercial products so that
they may be integrated in resource usage surveys similarly to
local packages.

73

15 - Installing CMT for the first time

These sections are of interest only if CMT is not yet installed
on your site, of if you need a private installation.

The first question you need to answer is the location where to
install CMT. This location is typically a disk area where most
of packages managed in your project will be located.

Then, you have to fetch the distribution kit from the Web at
http://www.lal.in2p3.fr/SI/CMT/CMT.htm. You must get at
least the primary distribution kit containing the basic
configuration information and the CMT sources. This
operation results in a set of directories hanging below the
CMT root and the version directory. The src branch contains
the sources of CMT, the fragments branch contains the
makefile fragments and the mgr branch contains the scripts
needed to build or operate CMT.

15.1 - Installing CMT on your Unix site

The very first operation after dowloading CMT consists in
running the INSTALL shell script. This will build the setup
scripts required by any CMT user.

Then you may either decide to build CMT by yourself or
fetch a pre-built binary from the same Web location. The
prebuilt binary versions may not exist for the actual
platform you are working on. You will see on the
distribution page the precise configurations used for
building those binaries.

In case you have to build CMT yourself, you need a C++
compiler capable of handling templates (although the
support for STL is not required). There is a Makefile

74

http://www.lal.in2p3.fr/SI/CMT/CMT.htm

provided in the distribution kit which takes g++ by default
as the compiler. If you need a specific C++ compiler you will
override the cpp macro as follows:

sh> gmake cpp=CC

The cppflags macro can also be used to override the
behaviour of the compilation.

Another important concern is the way CMT will identify
the platform. CMT builds a configuration tag per each type
of platform, and uses this tag for naming the directory
where all binary files will be stored. As such this tag has to
be defined prior to even build CMT itself.

CMT builds the default configuration by running the
cmt_system.sh script found in the mgr branch of CMT.
Run it manually to see what is the default value provided
by this script. You might consider changing its algorithm
for your own convenience.

A distribution kit may be obtained at the following URL :

http://www.lal.in2p3.fr/SI/CMT/CMT.htm

Once the tar file has been downloaded, the following
operations must be achieved :

1. Select a root directory where to install CMT. Typically
this will correspond to a development area or a public
distribution area.

2. Import the distribution kit mentioned above.
3. Uncompress and untar it.
4. Configure CMT.
5. CMT is ready to be used for developing packages.

75

A typical corresponding session could look like :

csh> cd /Packages
csh> <get the tar file from the Web>
csh> uncompress CMTv1r10.tar.Z
csh> tar xvf CMTv1r10.tar
csh> cd CMT/v1r10/mgr
csh> ./INSTALL
csh> source setup.csh
csh> gmake

15.2 - Installing CMT on a Windows or Windows NT site

You first have to fetch the distribution kit from the Web at
http://www.lal.in2p3.fr/SI/CMT/CMT.htm. You must get
at least the primary distribution kit containing the basic
configuration information and the CMT sources. This
operation results in a set of directories hanging below the
CMT root and the version directory. The binary kit
provided for Windows environments will generally fit your
needs.

You should consider getting the pre-compiled (for a
Windows environment) applications, and especially the
..\VisualC\install.exe application, which interactively
configures the registry entries as described in the next
paragraph.

The next operation consists in defining a few registries
(typically using the standard RegEdit facility or the
install.exe special application):

HKEY_LOCAL_MACHINE/Software/CMT/root will
contain the root directory where CMT is installed (eg.
"e:").
HKEY_LOCAL_MACHINE/Software/CMT/version
will contain the current version tag of CMT ("v1r10"

76

http://www.lal.in2p3.fr/SI/CMT/CMT.htm

for this version).
HKEY_LOCAL_MACHINE/Software/CMT/path/ may
optionally contain a set of text values corresponding to the
different package global access paths.
HKEY_LOCAL_MACHINE/Software/CMT/site will
contain the conventional site name.
HKEY_CURRENT_USER/Software/CMT/path/ may
contain a set of text of text values corresponding to the
different package private access paths.

CMT can also be configured to run on DOS-based
environments using the nmake facility. In this case, the
installation procedure is very similar to the Unix one:

A typical corresponding session could look like :

dos> cd Packages
dos> <get the tar file from the Web>
dos> cd CMT\v1r10\mgr
dos> INSTALL
dos> setup.bat
dos> nmake /f nmake

16 - Differences with previous versions of CMT

16.1 - Converting a package that was managed with previous
versions of CMT (or methods)

The primary source of information handled by CMT, i.e.
the syntax - and semantics - of the requirements file is
supposed to be maintained as backward compatible with
previous versions. Therefore we expect that the effects of
using a new version of CMT to a package already managed
by previous versions of CMT, will remain limited.

77

Generally, it is enough to just re-configure the package,
using the well known command

sh> cmt config

This will result in re-generating the setup scripts, and
verifying Makefile. A proper CMT Makefile contains at
least the two following lines:

include ${CMTROOT}/src/Makefile.header

include ${CMTROOT}/src/constituents.make

These two lines are the only required lines to be present in
an operational Makefile. However, the user is entirely free
to install additional make statements at any location for
his/her own purpose.

No further operation is then needed. All other makefile
fragments will be automatically generated at make time. It
is even recommended to remove any existing makefile
fragment generated by previous versions of CMT. This can
be easily done by using the dedicated configclean target as
follows

sh> gmake configclean

it might also be useful (if not recommended !) to clean the
binary directories and rebuild it as follows:

sh> gmake config
sh> gmake

Lastly, it’s often useful to broadcast these actions (and
primarily the cmt config action) towards all used packages
at once. This of course can easily be done through the cmt

78

broadcast command as follows:

sh> cmt broadcast cmt config
sh> cmt broadcast cmt gmake configclean

16.2 - Operations in a Windows environment

A graphical and interactive application (cmtw) is now
provided on Windows (95/98/NT) environments. This
application let the developer browse the package
directories, select any version of any package. Its
configuration is shown, and interactive edition is possible
on its requirements file. A few operations are also possible,
such as the generation of MSDev configuration files, so as
to directly work with packages managed by CMT within
the MSDev development environment. Currently this
support is still evolving and user might see limitations in
the dialog between CMT and MSDev (only the constituent
definitions - applications and libraries - and the use
mechanism - package relationships - are understood in the
context of MSDev). Users of these new facilities are kindly
invited to send their comments, bug observations,
suggestions or even contributions to the author.

17 - Appendices

17.1 - Standard make targets predefined in CMT

These targets can always be listed through the following
command :

sh> gmake help

79

target usage

help Get the list of possible make target for this package.

all build all components of this package.

clean remove everything that can be rebuilt by make

configclean remove all intermediate makefile fragments

check run all applications defined with the -check option

component-name
only build this particular component (as opposed to the all target that tries
to build all components of this package)

group-name
build all constituents belonging to this group (ie. those defined using the
same -group= option)

These targets have to be specified as follows :

sh> gmake clean
sh> gmake Foo

17.2 - Standard macros predefined in CMT

17.2.1 - Structural macros

These macros describe the structural conventions
followed by CMT. They receive a conventional default
value from the CMT requirements file. However, they
can be overridden in any package for its own needs.

macro usage default value

tag gives the binary tag ${CMTCONFIG}

src the src branch ../src/

inc the include branch ../src/

mgr the cmt or mgr branch ../cmt/ or ../mgr/

bin the branch for binaries ../${CMTCONFIG}/

javabin
the branch for java
classes

../classes/

doc the doc branch ../doc/

80

17.2.2 - Language related macros

These macros are purely conventional. They are
expected in the various make fragments available from
CMT itself for providing the various building actions.

During the mechanism of new language declaration and
definition available in the CMT syntax, developers are
expected to define similar conventions for
corresponding actions.

Their default values are originally defined inside the
requirements file of the CMT package itself but can be
redefined by providing a new definition in the package’s
requirements file using the macro statement. The
original definition can be completed using the
macro_append or macro_prepend statements.

cc The C compiler cc

ccomp
The C compiling
command

$(cc) -c -I$(inc) $(includes) $(cflags)

clink The C linking command $(cc) $(clinkflags)

cflags The C compilation flags none

pp_cflags
The preprocessor flags for
C

none

clinkflags The C link flags none

cpp The C++ compiler g++

cppomp
The C++ compiling
command

$(cpp) -c -I$(inc) $(includes) $(cppflags)

cpplink The C++ linking command $(cpp) $(cpplinkflags)

cppflags The C++ compilation flags none

pp_cppflags
The preprocessor flags for
C++

none

cpplinkflags The C++ link flags none

81

for The Fortran compiler f77

fcomp The Fortran compiling command $(for) -c -I$(inc) $(includes) $(fflags)

flink The Fortran linking command $(for) $(clinkflags)

fflags The Fortran compilation flags none

pp_fflags The preprocessor flags for fortran none

flinkflags The Fortran link flags none

ppcmd
The include file command for
Fortran

-I

javacomp
The java compiling
command

javac

jar
The java archiver
command

jar

lex The Lex command lex $(lexflags)

lexflags The Lex flags none

yacc The Yacc command yacc $(yaccflags)

yaccflags The Yacc flags none

ar
The archive
command

ar -clr

ranlib
The ranlib
command

ranlib

17.2.3 - Package customizing macros

These macros do not receive default values. They are all
prefixed by the package name. They are meant to
provide specific variant to the corresponding generic
language related macros.

They are automatically and by default concatenated by
CMT to fill in the corresponding global use macros (see
appendix on generated macros). However, this
concatenation mechanism is discarded when the
-no_auto_imports option is specified in the

82

corresponding use statement.

<package>_cflags specific C flags

<package>_pp_cflags specific C preprocessor flags

<package>_cppflags specific C++ flags

<package>_pp_cppflags specific C++ preprocessor flags

<package>_fflags specific Fortran flags

<package>_pp_fflags specific Fortran preprocessor flags

<package>_libraries
gives the (space separated) list of library names exported by this
package. This list is typically used in the cmt build library_links
command.

<package>_linkopts

provide the linker options required by any application willing to
access the different libraries offered by the package. This may
include support for several libraries per package.

A typical example of how to define such a macro could be :

macro Cm_linkopts "-L$(CMROOT)/$(Cm_tag) -lCm -lm"

<package>_stamps

may contain a list of stamp file names (or make targets).
Whenever a library is modified, one dedicated stamp file is
re-created, simply to mark the reconstruction date. The name of
this stamp file is conventionally <library>.stamp. Thus, a typical
definition for this macro could be :

macro Cm_stamps "$(Cm_root)/$(Cm_tag)/Cm.stamp"

Then, these stamp file references are accumulated into the
standard macro named use_stamps which is always installed
within the dependency list for applications, so that whenever one
of the libraries used from the hierarchy of used packages
changes, the application will be automatically rebuilt.

17.2.4 - Constituent specific customizing macros

These macros do not receive any default values (ie they
are empty by default). They are meant to provide for
each constituent, specific variants to the corresponding
generic language related macros.

By convention, they are all prefixed by the constituent

83

name. But macros used for defining compiler options
are in addition prefixed by the constituent category (either
lib_, app_ or doc_

They are used in the various make fragments for fine
customization of the build command parameters.

<category>_<constituent>_cflags specific C flags

<category>_<constituent>_pp_cflags specific C preprocessor flags

<category>_<constituent>_cppflags specific C++ flags

<category>_<constituent>_pp_cppflags specific C++ preprocessor flags

<category>_<constituent>_fflags specific Fortran flags

<category>_<constituent>_pp_fflags specific Fortran preprocessor flags

<constituent>linkopts

provides additional linker options to the
application. It is complementary to - and should
not be confused with - the <package>_linkopts
macro, which provides exported linker options
required by clients packages to use the package
libraries.

<constituent>_shlibflags

provides additional linker options used when
building a shared library. Generally, a simple
shared library does not need any external
reference to be resolved at build time (it is in this
case supposed to get its unresolved references
from other shared libraries). However, (typically
when one builds a dynamic loading capable
component) it might be desired to statically link it
with other libraries (making them somewhat
private).

<constituent>_dependencies

provides user defined dependency specifications
for each constituent. The typical use of this macro
is fill it with the name of the list of some other
constituents which have to be rebuilt first (since
each constituent is associated with a target with
the same name). This is especially needed when
one want to use the parallel gmake (ie. the -j
option of gmake).

84

17.2.5 - Source specific customizing macros

These macros do not receive any default values (ie they
are empty by default). They are meant to provide for
each source file, specific variants to the corresponding
generic language related macros.

By convention, they are all prefixed by the source file
name followed by the source file suffix (either _c, _cxx,
_f, etc.)

They are used in the various make fragments for fine
customization of the build command parameters.

<constituent>_<suffix>_cflags specific C flags

<constituent>_<suffix>_cppflags specific C++ flags

<constituent>_<suffix>_fflags
specific Fortran
flags

17.2.6 - Generated macros

These macros are automatically generated when make is
run.

The first set of them provide constant values
corresponding to CMT based information. They are not
meant to be overridden by the user, since they serve as a
communication mean between CMT and the user.

85

<PACKAGE>ROOT The access path of the package (including the version branch)

<package>_root

The access path of the package (including the version branch).
This macro is very similar to the <PACKAGE>ROOT macro
except that it tries to use a relative path instead of an absolute
one.

<PACKAGE>VERSION The used version of the package

PACKAGE_ROOT
The access path of the current package (including the version
branch)

package The name of the current package

version The version tag of the current package

The second set is deduced from the context and from the
requirements file of the package. They can be
overridden by the user so as to customize the CMT
behaviour.

<package>_tag
The specific configuration tag for the package. By default it
is set to $(tag) but can be freely overridden

constituents
The ordered set of constituents declared without any group
option

<group-name>_constituents
The ordered set of all constituents declared using a
group=<group-name> option

The third set of generated macros are the global use
macros. They correspond to the concatenation of the
corresponding package specific customizing options that
can be deduced from the ordered set of use statements
found in the requirements file (taking into account the
complete hierarchy of used packages with the exception
of those specified with the
-no_auto_imports option in their use statement) :

86

use_cflags C compiler flags

use_pp_cflags Preprocessor flags for the C language

use_cppflags C++ compiler flags

use_pp_cppflags Preprocessor flags for the C++ language

use_fflags Fortran compiler flags

use_pp_fflags Preprocessor flags for the Fortran language

use_libraries List of library names

use_linkopts Linker options

use_stamps Dependency stamps

use_requirements The set of used requirements

use_includes
The set of include search paths options for the preprocessor from the
used packages

use_fincludes
The set of include search paths options for the fortran preprocessor
from the used packages

includes The overall set of include search paths for the preprocessor

fincludes
The overall set of include search paths options for the fortran
preprocessor

17.2.7 - Utility macros

These macros are used to specify the behaviour of
various actions in CMT.

87

X11_cflags compilation flags for X11

Xm_cflags compilation flags for Motif

X_linkopts Link options for XWindows (and Motif)

make_shlib
The command used to generate the shared library from the static
one

shlibsuffix The system dependent suffix for shared libraries

shlibbuilder The loader used to build the shared library

shlibflags The additional options given to the shared library builder

symlink The command used to install a symbolic link

The command used to remove a symbolic link

build_prototype
The command used to generate the C prototype header file (default
to the internal cmt dedicated command)

build_dependencies
The command used to generate dependencies (default to the internal
cmt dedicated command)

lock_command The command used to physically lock a package

unlock_command The command used to physically unlock a package

make_hosts
The list of remote host names which exactly require the make
command

gmake_hosts
The list of remote host names which exactly require the gmake
command

17.3 - Standard templates for makefile fragments

template name usage used in fragment

ADDINCLUDE
additional
include
path

<language> java

CONSTITUENT
name of the
constituent

<language> java jar make_header jar_header java_header
library_header application_header protos_header
library_no_share library application dependencies
cleanup_header cleanup_library cleanup_application
check_application document_header <document> trailer
dsw_all_project_dependency dsw_project
dsp_library_header dsp_shared_library_header
dsp_windows_header dsp_application_header dsp_trailer
constituent check_application_header

DATE now make_header

88

FILENAME
file name
without
path

buildproto <language> <document>

FILEPATH file path buildproto <language> <document>

FILESUFFIX
file suffix
(without
dot)

<language>

FILESUFFIX
file suffix
(with dot)

<document>

FULLNAME
complete
file path
and name

<language> cleanup <document> dsp_contents

GROUP
group
name

constituents_header

LINE source files <language> dependencies constituent

LINKMACRO link macro application

NAME

file name
without
path and
suffix

buildproto <language> java <document>

OBJS object files
jar_header java_header jar library_no_share library
application cleanup_java document_header trailer

OUTPUTNAME
output file
name

java

PACKAGE
current
package
name

<language> dsw_header dsw_all_project
dsw_all_project_trailer dsw_trailer dsp_all
make_setup_header make_setup readme_header readme
readme_use readme_trailer

PACKAGEPATH
current
package
location

readme_use

PROTOSTAMPS
prototype
stamp files

protos_header

PROTOTARGET
prototype
target
name

library_header application_header

SUFFIX
document
suffix

<document>

89

TITLE
title for
make
header

make_header

USER user name make_header

VERSION
current
package
version tag

readme_header readme readme_use

17.4 - Makefile generation sequences

This section describes the various makefile generation
sequences provided by CMT. Each sequence description
shows the precise set of make fragments used during the
operation.

Generated makefile description used make fragments

setup.make
Configuration files
for make

1. make_setup_header
2. make_setup

constituents.make
the main entry point
point for all
constituent targets

1. constituents_header
2. constituent
3. check_application_header

<constituent>.make
application or library
specific make
fragment

1. make_header
2. java_header | jar_header | library_header |

application_header
3. protos_header
4. buildproto
5. jar | library | library_no_share |

application
6. dependencies
7. <language> | <language>_library | java
8. cleanup_header
9. cleanup

10. cleanup_application
11. cleanup_objects
12. cleanup_java
13. cleanup_library
14. check_application

90

<constituent>.make
document specific
make fragment

1. make_header
2. document_header
3. dependencies
4. <document>
5. <document-trailer>
6. cleanup_header

<package>.dsw
Visual workspace
configuration files

1. dsw_header
2. dsw_all_project_header
3. dsw_all_project_dependency
4. dsw_all_project_trailer
5. dsw_project
6. dsw_trailer
7. dsp_all

<constituent>.dsp
Visual project
configuration files

1. dsp_library_header |
dsp_shared_library_header |
dsp_windows_header |
dsp_application_header

2. dsp_contents
3. dsp_trailer

README .

1. readme_header
2. readme
3. readme_use
4. readme_trailer

17.5 - The complete requirements syntax

The syntax of specification statements that can be installed
in a requirements file are :

cmt-statement : alias

| application

| apply_pattern

| author

| branches

| build_strategy

| cleanup_script

| document

| ignore_pattern

91

| include_dirs

| include_path

| language

| library

| macro

| macro_append

| macro_prepend

| macro_remove

| macro_remove_all

| make_fragment

| manager

| package

| path

| path_append

| path_prepend

| path_remove

| pattern

| private

| public

| set

| set_append

| set_prepend

| set_remove

| setup_script

| tag

| use

| version

| version_strategy

alias : alias alias-name value [tag value ...]

application : application application-name [constituent-option ...] source ...

92

constituent-option : -OS9

| -windows

| -no_share

| -no_static

| -prototypes

| -no_prototypes

| -check

| -group=group-name

| -suffix=output-suffix

| -import=package-name

| variable-name=variable-value

source : [-s=new-search-path] file-name

apply_pattern : apply_pattern pattern-name [template-name=value ...]

author : author author-name

branches : branches branch-name ...

build_strategy : build_strategy build-strategy-name

build-strategy-name : prototypes

| no_prototypes

| keep_makefiles

| rebuild_makefiles

cleanup_script : cleanup_script script-name

document : document document-name [constituent-option ...] source ...

ignore_pattern : ignore_pattern pattern-name

include_dirs : include_dirs search-path ...

include_path : include_path search-path

language : language language-name [language-option ...]

language-option : -suffix=suffix

| -linker=linker-command

| -prototypes

| -preprocessor_command=preprocessor-command

93

| -fragment=fragment

| -output_suffix=output_suffix

| -extra_output_suffix=extra_output_suffix

library : library library-name [constituent-option] source ...

macro : macro macro-name value [tag value ...]

macro_append : macro_append macro-name value [tag value ...]

macro_prepend : macro_prepend macro-name value [tag value ...]

macro_remove : macro_remove macro-name value [tag value ...]

macro_remove_all : macro_remove_all macro-name value [tag value ...]

make_fragment : make_fragment fragment-name fragment-option

fragment-option : -suffix=suffix

| -dependencies

| -header=fragment

| -trailer=fragment

manager : manager manager-name

package : package package-name

path : path path-name value [tag value ...]

path_append : path_append path-name value [tag value ...]

path_prepend : path_prepend path-name value [tag value ...]

path_remove : path_remove path-name value [tag value ...]

pattern : pattern [-global] pattern-name cmt-statement [; cmt-statement
...]

private : private

public : public

set : set set-name value [tag value ...]

set_append : set_append set-name value [tag value ...]

set_prepend : set_prepend set-name value [tag value ...]

set_remove : set_remove set-name value [tag value ...]

setup_script : setup_script script-name

tag : tag tag-name [tag ...]

use : use package-name [version-tag [access-path]]

94

[use-option]

version : version version-tag

version-tag : key version-number [key release-number [key patch-number]]

use_option : -no_auto_imports

| -auto_imports

key : letter ...

version_strategy : version_strategy version-strategy-name

version-strategy-name : best_fit

| best_fit_no_check

| first_choice

| last_choice

| keep_all

17.6 - The internal mechanism of cmt cvs operations

Generally, CVS does not handle queries upon the
repository (such as knowing all installed modules, all tags
of the modules etc..). Various tools such as CVSWeb, LXR
etc. provide very powerful answers to this question, but all
through a Web browser.

CMT provides a hook that can be installed within a CVS
repository, based on a helper script that will be activated
upon a particular CVS command, and that is able to
perform some level of scan within this repository and
return filtered information.

More precisely, this helper script (found in
${CMTROOT}/mgr/cmt_buildcvsinfos2.sh) is meant to be
declared within the loginfo management file (see the CVS
manual for more details) as one entry named .cmtcvsinfos,
able to launch the helper script. This installation can be
operated at once using the following sequence:

95

http://www.cvshome.org/docs/manual/index.html
http://www.cvshome.org/docs/manual/index.html

sh> cd ${CMTROOT}/mgr
sh> gmake installcvs

This mechanism is thus fully compatible with standard
remote access to the repository.

Once the helper script is installed, the mechanism operates
as follows (this actually describes the algorithms installed
in the CvsImplementation::show_cvs_infos method
available in cmt_cvs.cxx and is transparently run when one
uses the cmt cvsxxx commands):

1. Find a location for working with temporary files. This is
generally deduced from the ${TMPDIR} environment
variable or in /tmp (or in the current directory if none
of these methods apply).

2. There, install a directory named
cmtcvs/<unique-name>/.cmtcvsinfos

3. Then, from this directory, try to run a fake import
command built as follows:
cvs -Q import -m cmt .cmtcvsinfos/<package-name> CMT v1

Obviously this command is fake, since no file exist in the
temporary directory we have just created. However,

4. This action actually triggers the cmt_buildcvsinfos2.sh
script, which simply receives in its argument the module
name onto which we need information. This information
is obtained by scanning the files into the repository, and
an answer is built with the following syntax:
[error=error-text] (1)
tags=tag ... (2)
branches=branch ... (3)
subpackages=sub-package ... (4)

1. In case of error (typically when the requested module

96

is not found in the repository) a text explaining the
error condition is returned

2. The list of tags found on the requirements file
3. The list of branches defined in this packages (ie

subdirectories not containing a requirements file)
4. The list of subpackages (ie subdirectories containing

a requirements files)

Christian Arnault

97

	CMTConfiguration Management Tool
	Version v1r10Christian Arnaultarnault@lal.in2p3.fr

	Contents
	1 - Copyright.
	 2 - Presentation.
	 3 - The conventions.
	 4 - The architecture of the environment.
	 4.1 - Supported platforms

	 5 - Installing a new package.
	 6 - Localizing a package - The CMTPATH configuration parameter.
	 7 - Managing site dependent features - The CMTSITE environment variable.
	 8 - Configuring a package.
	 9 - Selecting a specific configuration.
	 9.1 - Describing a configuration.
	 9.2 - Defining the user tags.
	 9.3 - Activating tags.

	 10 - Working on a package.
	 10.1 - Working on a library.
	 10.2 - Working on an application
	 10.3 - Working on a test or external application
	 10.4 - Construction of a global environment

	 11 - Defining a document generator
	 11.1 - 11.2 - How to create and install a new document style
	 11.2 - How to create and install a new document style
	 11.3 - Examples

	 12 - The tools provided by CMT
	 12.1 - The requirements file
	 12.1.1 - The general requirements syntax
	 12.1.2 - The complete requirements syntax

	 12.2 - The concepts handled in the requirements file
	 12.2.1 - Meta-information : author, manager
	 12.2.2 - package, version
	 12.2.3 - Constituents : application, library, document
	 12.2.4 - Groups
	 12.2.5 - Languages
	 12.2.6 - Symbols : alias, set, set_append, set_prepend, set_remove, macro, macro_append, macro_prepend, macro_remove, macro_remove_all, path, path_append, path_prepend, path_remove
	 12.2.7 - use
	 12.2.8 - pattern, apply_pattern, ignore_pattern
	 12.2.9 - branches
	 12.2.10 - build_strategy, version_strategy
	 12.2.11 - setup_script, cleanup_script
	 12.2.12 - include_path
	 12.2.13 - include_dirs
	 12.2.14 - make_fragment
	 12.2.15 - public, private
	 12.2.16 - tag

	 12.3 - The general cmt user interface
	 12.3.1 - cmt broadcast [-select=list] [-exclude=list] [-local] [-global] [-begin=pattern] [-depth=<n>] [-all_packages] <shell command>
	 12.3.2 - cmt build <option>
	 12.3.3 - cmt check configuration
	 12.3.4 - cmt check files <reference-file> <new-file>
	 12.3.5 - cmt checkout ...
	 12.3.6 - cmt co ...
	 12.3.7 - cmt cleanup [-csh|-sh]
	 12.3.8 - cmt config
	 12.3.9 - cmt create <package> <version> [<area>]
	 12.3.10 - cmt filter <in-file> <out-file>
	 12.3.11 - cmt help
	 12.3.12 - cmt lock cmt lock [<package> <version> [<area>]]
	 12.3.13 - cmt remove <package> <version> [<area>]
	 12.3.14 - cmt remove library_links
	 12.3.15 - cmt run shell-command
	 12.3.16 - cmt setup [-csh|-sh|-bat]
	 12.3.17 - cmt show <option>
	 12.3.18 - cmt system
	 12.3.19 - cmt unlock cmt unlock [<package> <version> [<area>]]
	 12.3.20 - cmt version
	 12.3.21 - cmt cvstags <module>
	 12.3.22 - cmt cvsbranches <module>
	 12.3.23 - cmt cvssubpackages <module>

	 12.4 - The setup and cleanup scripts
	 12.5 - cmt build prototype

	 13 - Using cvs together with CMT
	 13.1 - Importing a package into a cvs repository
	 13.2 - Checking a package out from a cvs repository
	 13.3 - Querying CVS about some important infos
	 13.4 - Working on a package, creating a new release
	 13.5 - Getting a particular tagged version out of cvs

	 14 - Interfacing an external package with CMT
	 15 - Installing CMT for the first time
	 15.1 - Installing CMT on your Unix site
	 15.2 - Installing CMT on a Windows or Windows NT site

	 16 - Differences with previous versions of CMT
	 16.1 - Converting a package that was managed with previous versions of CMT †or methods‡
	 16.2 - Operations in a Windows environment

	 17 - Appendices
	 17.1 - Standard make targets predefined in CMT
	 17.2 - Standard macros predefined in CMT
	 17.2.1 - Structural macros
	 17.2.2 - Language related macros
	 17.2.3 - Package customizing macros
	 17.2.4 - Constituent specific customizing macros
	 17.2.5 - Source specific customizing macros
	 17.2.6 - Generated macros
	 17.2.7 - Utility macros

	 17.3 - Standard templates for makefile fragments
	 17.4 - Makefile generation sequences
	 17.5 - The complete requirements syntax
	 17.6 - The internal mechanism of cmt cvs operations

