CMT
Configuration Management T ool

Version virl0
Christian Arnault
arnault@al .in2p3.fr

Contents

AN

© N U

10.

11.

12.

Copyright.
Presentation.

The conventions.
The architecture of the environment.
1. Supported platforms
Installing a new package.
Localizing apackage - The CMTPATH environment variable.
Managing site dependent features- The CM TSI TE environment variable.

Configuring a package.
Selecting a specific configuration.
1. Describing a configuration.

2. Defining the user tags.

3. Activating tags.
Working on a package.

1. Working on alibrary.

2. Working on an application

3. Working on atest or external application
4. Construction of aglobal environment

Defining a document generator.
1.

2. How to create and install a new document style
3. Examples
Thetools provided by CMT
1. Therequirementsfile
1. The genera requirements syntax
2. The complete requirements syntax
2. The concepts handled in the requirementsfile
1. Meta-information : author, manager
2. package, version
3. Constituents : application, library, document
4. Groups
5. Languages

o

Symbols: alias, set, set_append, set_prepend, set_remove, macro, macro_append,
macro_prepend, macro_remove, macro_remove _all, path, path append, path_prepend, path_remove

use
pattern, apply pattern, ignore_pattern
branches
10. build_strategy. version_strategy
11. setup_script, cleanup_script
12. include path
13. include dirs
14. make fragment
15. public, private
16. tag
3. The general cmt user interface
1. cmt broadcast [-select=list] [-exclude=list] [-local] [-depth=n] [-all packages]
<shell command>
cmt build <option>
cmt check_configur ation
cmt check_files <reference-file> <new-file>
cmt checkout ...
cmtco...
cmt cleanup [-cshl-sh]
cmt config
cmt create <package> <version> [<ar ea>]
cmt filter <in-file> <out-file>
. cmt help
cmt lock [<package> <version> [<area>]]
. cmt remove <package> <version> [<area>]
. cmt removelibrary_links
. cmt run shell-command
. cmt setup [-csh|-sh]
. cmt show <option>
. cmt system
. cmt unlock [<package> <version> [<area>]]
. cmt version
. cmt cvstags <module>
. cmt cvsbranches <module>
23. cmt cvssubpackages <module>
4. The setup and cleanup scripts
5. cmt build prototype
13. Using cvstogether with CM T
1. Importing a package into a cvs repository
2. Checking a package out from a cvs repository
3. Querying CVS about some important infos
4. Working on a package, creating a new release
5. Getting a particular tagged version out of cvs
14. Interfacing an external package with CMT
15. Installing CMT for thefirst time

© o N

©ooNOO U~ WN

=
©

B
N

=
w

H
~

=
o

=
(o))

=
\'

ol
© ™

N DN
= O

N
N

1. Installing CMT on your Unix site
2. Installing CMT on aWindows or Windows NT site
16. Differences with previous versions of CMT
1. Converting a package that was managed with previous versions of CMT (or methods)
2. Operationsin a Windows environment
17. Appendices
1. Standard make targets predefined in CMT
2. Standard macros predefined in CMT
Structural macros
L anguage related macros
Package customizing macros
Constituent specific customizing macros
Source specific customizing macros
Generated macros
Utility macros
Standard templ ates for makefile fragments
M akefile generation sequences
The complete requirements syntax
The internal mechanism of cmt cvs operations

NoabkwdhpE

o vk w

1 - Copyright.
Copyright (c) 1996 LAL Orsay, UPS-IN2P3-CNRS (France).

Redistribution and use in source and binary forms, with or without maodification, are permitted
provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, thislist of conditions and
the following disclaimer.

e Redistributionsin binary form must reproduce the above copyright naotice, thislist of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

e All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the
Computer Application Development Group at LAL Orsay
(Laboratoire de I’ Accelerateur Linaire - UPS-IN2P3-CNRS).

e Neither the name of the Institute nor of the Laboratory may be used to endorse or promote
products derived from this software without specific prior written permission.

This softwareis provided by the LAL and contributors‘‘asis’ and any expressor implied
warranties, including, but not limited to, theimplied war ranties of merchantability and fitness
for aparticular purpose aredisclaimed. In no event shall the LAL or contributorsbeliablefor
any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not
limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability,

or tort (including negligence or otherwise) arising in any way out of the use of this software, even
if advised of the possibility of such damage.

2 - Presentation.

This environment, based on some management conventions and comprising several shell-based
utilities, is an attempt to formalize software production and especially configuration management
around a package-oriented principle.

The notion of packages represents hereafter a set of software components (that may be
applications, libraries, documents, tools etc...) that are to be used for producing a systemor a
framework. In such an environment, several persons are assumed to participate in the

devel opment and the components themselves are either independent or related to each other.

The environment provides conventions (for naming packages, files, directories and for addressing
them) and tools for automating as much as possible the implementation of these conventions. It
permits the description of the configuration requirements and automatically deduce from the
description the effective set of configuration parameters needed to operate the packages (typically
for building them or using them).

CMT lays upon some organisational or manageria principles or mechanisms described below.
However, it permitsin many respects the users or the managers to control, specialize and
customi ze these mechanisms, through parameterization, strategy control and generic
specifications.

® Many such packages are produced and maintained.

® The packages may or not be related to each other (defining adirect acyclic graph of
packages - not just asingle tree).

e Each executable application (from now on simply named applications) either belongsto a
particular package and/or defines its own environment and then makes use of some other
packages.

® FEach package can be uniquely identified within the system or the framework by a name
which is usually a short mnemonic and which may be also used for isolating its name-space
(eg. by prefixing components of the package by its mnemonic).

® A package installed in this environment may be exported to a site where the architecture is
reproduced, and as long as the local organisation defined for the package is preserved
through the transport, the reconstruction procedure will be preserved. Configuration
specifications can be easily provided to cope with machine, site or system specific features.

® Packages are maintained consistently to their declared relationships to each other through a
version identification model based on :

O aversion is defined with a mnemonic comprising at least two numbers for the major id
and the minor id,

O versionswith different major ids are said to be incompatible,

O versions with same magjor ids but different minor ids are said to be backward
compatible with respect of the minor id ordering.

® Version control and management schemes (eg. by using CV'S) are usually consistently
operated, applying the conventions on organization and version identification.

® An application that uses one or several packages managed in this environment should not
itself be constrained to be managed this way. The tools should only require afew exported
features (such as afew environment variables) for referencing any given package.

e similarly, a package maintained in this environment must be able to use packages that are
not managed in this environment.

Following these definitions, the basic configuration management operations involved here (and
serviced by the CM T’ tools) consist of :
e installing the packages in conventional locations so that they can be referenced by each
other,
® describing the configuration requirements for each package:
O dependencies to other packages,
symbolsto be exported to client packages (environment variables, make macros, €etc...)
components of the packages (libraries, applications, documents)
M ake macros
Strategiesthat CM T should follow at run time, overriding its default ones.
O Generic behavioural patterns meant to describe generic configuration items.
® deducing the effective configuration parameters from the reguirements so asto automatize
the building phases and the run-time operations and connections between packages
(typically for generating makefiles, generating compiler and linker options, shared libraries
paths etc...). This construction mechanism follows customizable strategies (eg. for selecting
among possible aternate versions of available packages).

O O O O

3 - The conventions.

This environment relies on a set of conventions, mainly for organizing the directories where
packages are maintained and devel oped :

® FEach packageisinstalled in a standard directory structure defined at least as follows:

<some root >/ <Package mmenoni c>/ <ver si on mMmenoni c>/ cm

or / and (obsolescent convention)

<sone root >/ <Package mmenoni c>/ <versi on mMmenoni ¢>/ nyr

This style of organization should be considered as the basic (and unique) criterion for a
package to be recognized as avalid CMT package.

However, many other parallel branches (similar to cmt) such as src, include or test may be
freely added to thislist according to the specific needs of each package. In particular, a set of
such parallel branches are expected to contain binary outputs (those that compilers, linkers,
archive managers or other kinds of code or pseudo-code generators can produce). Their
name always corresponds to the particular configuration tag used to produce the output
(such as the machine or operating system type). The CMT toolkit provides the cmt system
utility (ashell script) that provides a default value for this token. An environment variable
(CMTCONFIG) isaso assigned to this value (See this section for a compl ete description of
configuration tags).

Each branch may in addition be freely structured, and there is no constraint to the
complexity of this organization.

There are no constraints on the number of roots into which CM T packages are installed.
WEe'll seelater on how the different roots will be declared and identified by CMT.

examples of such structure can be :
[IMAGE]
Sructuring a sofware base.

® Thetypical leaves of a package directory structure are therefore:

cnt or ngr for the management utilities (such as the Makefile)

src the sources of the package

doc for the package documentation

${ CMICONFI G} | for the produced binaries (compiled objects, libraries, executables)

As many other useful branches as needed may also be defined according to the specific
needs of the packages.

Any other deeper hierarchy structure may also be defined, such as for instance, organizing
the sources into a hierarchy of branches.

[IMAGE]

Sructuring a package.

4 - The architectur e of the environment.

This environment is based on the fact that one of its packages (named CM T) provides the basic
management tools. CM T, as a package, has very little specificities and as such must itself obey
the general conventions. The major asymetry between CM T and all other packages is the fact that
once CMT isinstalled it implicitly defines the default root for all other packages (through the
environment variable CMTROOQOT).

Then packages may be installed either in the default root or in completely different areas. The
only constraint in this case being that their root will have to be specified explicitly.

A typical configuration for this environment consists of selecting a public area (generally
available from several machines through an NFS or AFS-like mechanism), installing the CMT
basic package, and then installing user packages in this default root or in private ones. One
frequent semantic given to this style of configuration is to consider the packages installed in the
area hanging below default root as the publicly available version, whereas packagesinstalled
elsewhere are rather meant to be managed in a private context, or in the context of a non public
project. However, dependencies between packages will always be possible (as long as the system
based protections provide appropriate access rights).

CMT is operated through one main user interface : the cmt command, which handlesthe CMT
conventions and which provides a set of servicesfor :

® creating anew package, installing it below the default root or in aprivate area. This
operation will create or check the local package directory tree and build up several minimal
scripts that can be customized (see the description of the create command),

® describing or monitoring :

O the relationships between the package and other packages and the (public) exporting

features the package should provide,

O the set of features needed for the package devel opment (private features)
O the components of the package in terms of libraries or executables,

e automatically generating the reconstruction scripts (makefiles) from this description.
® recursively acting upon the hierarchy of used packages.

Several other utilities are also provided for some specific activities (such as the automatic
production of shared libraries, C prototypes, management of interactions between CVSand CMT
itself, the management of a similar architecture for Windows or OS9, setting up protections for
packages (though locks) etc...).

4.1-

Supported platforms

CMT has been ported and tested on a wide range of machines/operating systems, including :

DEC-Unix V4.0

HP-UX-10 (several types of platforms)

AlX-4

Solaris

IRIX

Severa variants of LynxOS

Linux 2.0

Windows 95/98/NT/Windows2000 (nmake based environment and
M SDev/Visual C++ environment)

Darwin (Mac OS X)

Thisin particular means that a package devel opped on one platform may be re-configured
towards any of these platforms without any change to its configuration description (setup
scripts, makefiles, ...).

5 - Installing a new package.

We consider here the installation of a user package. Installing CM T itself requires special
attention and is described in dedicated section of this document.

Therefore, we assume that some root directory has been selected by the system manager, and that
CMT isdready instaled in this area. Onefirst hasto setup CMT in order to gain access to the
various management utilities, using for example the shell command:

csh> source /Il al/CMI/v1r 10/ ngr/ setup. csh

or

ksh> . /lal/CMI/vlr10/ mgr/ setup. sh

or

dos> call \lal\CMM vlr 10\ ngr\setup. bat

Obvioudly, this operation must be performed (once) before any other CM T action. Thereforeitis
often recommended to install this setup action straight in the login script.

The setup script used in this exampleis aconstant inthe CM T environment : every configured
package will have one such setup script automatically generated and installed by CMT. It isone
important entry point to any package (and thusto CMT itself). It provides environment variable
definitions and invocations of setup scripts for related (used) packages (A corresponding cleanup
script is aso provided). This script contains a uniform mechanism for interpreting the
requirements file so as to dynamically define environment variables, aliases for the package itself
and all its used packages. It is constructed once per package installation by the cmt create
command, or restored by the cmt config command (if it has been lost).

A package is primarily defined by a name and a version identifier. These two attributes will be
given as arguments to cmt cr eate such as in the following example :

csh> cd nydev
csh> cnt create Foo vl

Configuring environnent for package Foo version vl1.

CMT version v1r10. [1]
Root set to /users/dsksi/arnault/nmydev

Systemis al pha [2]
Installing the package directory [3]

Installing the version directory
Installing the cnt directory
Creating setup scripts.

Creating cleanup scripts.

1. Thisshowswhich actual CMT version you are currently using

2. Thisshows the current configuration tag (also available by thecnt syst emcommand). In
this example thisisa Compag al pha machine

3. This shows the detailed construction of the complete directory structure, starting from the
top directory which has the name of the package. Since we are creating a completely new
package, there will be by default only two branches below the version directory : cnt and
src.

The package creation occured from the current directory, creating from there the complete
directory tree for this new package.

In the next example, we install the package in acompletely different area, by explicitly specifying
the path to it as athird argument to cmt create:

> cnt create Foo vl ~/ Packages

Configuring environnent for package Foo version vl.
CMI' version vlir10.

Root set to /users/dsksi/arnault/Packages.
Systemis al pha

Installing the package directory
Installing the version directory
Installing the cnt directory
Creating setup scripts.

Creating cl eanup scripts.

Several file creations occurred at thislevel :

e aminimal directory tree for the package, including src and cmt (the other branches will be
installed when needed or generated at build time).

® an empty configuration specification file (named requirements) installed in the cmt branch.

® A minima Makefile (on Unix environments), containing

i ncl ude $(CMTROQOT)/ src/ Makefil e. header

i ncl ude $(CMTROOT)/ src/ constituents. nake

This M akefile does not need any modification to build any of the constituents managed by
CMT. Theintermediate makefile fragments will always be re-generated transparently and
automatically at build time. However (and thanks to this feature), thisfile will not be
modified anymore by CMT itself. Thus you may insert any particular make statement you
would feel appropriate, typically when you ask for operations that cannot be taken into
account by CMT.

® A similar minimal NM ake file (on Windows environments), containing

l'incl ude $(CMIROOT)\ src\ N\viakefi | e. header

linclude $(CMIROOT)\ src\constituents. nnake

® the setup and cleanup scripts (one flavour for each shell family).
One may then setup this new package by running the setup script (which will not have much
effect yet since the requirementsfileis empty) :

csh> cd ~/ nmydev/ Foo/ v1/cnt
csh> source setup.csh

or

csh> cd ~/ Packages/ Foo/ v1/cnt

csh> source setup.csh

or

dos> cd \ Packages\ Foo\ v1\ cmt
dos> cal |l setup. bat

The FOOROOT and FOOCONFIG environment variables are defined automatically by this
operation.

It should be noted that running the setup script of a package is not always necessary for building
operations. The only situation where running this script may become useful, iswhen an
application isto be run, while regquiring domain specific environment variables defined in one of
the used packages. Besides this particular situation, running the setup scripts may not be needed
at all.

Lastly, this newly created package may be removed by the quite similar remove command, using
exactly the same arguments as those used for creating the package.

csh> cd nydev
csh> cnt renove Foo vl

Renmovi ng package Foo version vi.

CMT version v1r10.

Root set to /users/dsksi/arnault/mydev.
Systemis al pha

Version vl has been renoved from /users/dsksi/arnaul t/ nydev
Package Foo has no nmore versions. Thus it has been renoved.

or:

csh> cnt renove Foo vl ~/ Packages

Renmovi ng package Foo version vi.

CMI' version vir10.

Root set to /users/dsksi/arnault/Packages.
Systemis al pha

Version vl has been renoved from /users/dsksi/arnaul t/Packages
Package Foo has no more versions. Thus it has been renoved.

So far our package is not very useful since no constituent (application or library) isinstalled yet.
Y ou can jump to the section showing how to work on an application or on alibrary for details on
these operations or we can roughly draw the sequence used to specify and build the simplest
application we can think of asfollows:

csh>cd ../src
csh> cat >FooTest.c
#i ncl ude <stdio. h>

int main ()
{
printf ("Hello Foo\n");

return (0);

}

csh>cd ../cm

10

csh> vi requirenents

applicati on FooTest FooTest.c
csh> gmake

csh> ../ ${CMICONFI G/ FooTest . exe
Hel 1 o Foo

This can still be simplified by providing the -check option to the application definition:

csh> cd ../cnt
csh> vi requirenents

application FooTest -check FooTest.c
csh> gmake check
Hel 1 o Foo

6 - Localizing a package- The CMTPATH
configuration parameter.

In the next sections, we'll seethat packages reference each other by means of use relationships.
CMT provides a quite flexible mechanism for localizing the referenced packages.

A given version of agiven package is always referred to by using a use statement within its
reguirementsfile. This statement should specify the package through three keys :

® itsname (such asCm)
® itsversion (such asv7r5)
e optionaly its expected location or prefix (such as/lal) (also called the use path)

use Cmv7r5
or

use Cmv7r5 A
or

use Cmv7r5 /projectB/ A

Given these keys, the referenced package is looked for according to a prioritized search list which
is (in decreasing priority order) :

1. the absolute access path, if the use path is absolute,

2. the access paths optionally registered in the configuration parameter - see below -
CMTPATH (and in decreasing priority, the first element being searched for first),

3. the default root.

4. the path where the current package isinstalled,

11

The configuration parameter CMTPATH can be specified either in the environment
variable named CMTPATH or in .cmtrc files, which can themselves be |ocated either in the
current directory, in the home directory of the developper or in {CMTROOT}/ mgr. In the
Windows environment, this configuration parameter may also be installed as a Registry
under either the keys:

e HKEY_LOCAL_MACHINE/Software/CMT/path

e HKEY_CURRENT_USER/Software/CMT/path
(A graphical tool vailable in %CMTROOT%\Visual C\install .exe permits the interactive
modification of thislist)

If the path argument is specified as arelative path (ie. thereis no leading slash character or it's
not a disk on windows machines), it will be used as an offset to each search case. The search is
done starting from the list specified in the CM TPATH configuration parameter, then using the
default root; and the offset is appended at each searched location.

The CMTPATH parameter isthus used as a search list for the packages, and the individual paths
are separated in thislist by spaces or by colons.

Asan example, if we specify the CMTPATH parameter asfollows :

csh> setenv CMIPATH /users/ dsksi/arnaul t/dev:/exp/virgo/ projects

or (ina.cmtrcfile)

CMTPATH=/ user s/ dsksi / arnaul t / dev: / exp/ vi rgo/ proj ect s

Then a use statement (defined within a given package) containing :

use Cmv7r5
use Cm vl Cm

(and assuming that the default root is/lal) would look for the package Cm from :
1. /users/dsksi/ar nault/dev/Cm/v7r5/cmt
2. lexplvirgo/projectsCm/v7r5/cmt
3. /lal/Cm/v7r5/cmt
4. the same path as the current package
Whereas the package Cmo would be searched from :
1. /users/dsksi/ar nault/dev/Cm/Cmo/vl/cmt
2. lexp/virgol/projectsCm/Cmol/vl/cmt
3. /lal/lCm/Cmolvl/cmt
4. the directory Cm within the same path as the current package,
The packages are searched assuming that the directory hierarchy below the access paths always
follow the convention :
1. thereisafirst directory level named according to the package name,
2. then the next directory level is named according to the version tag,
3. then thereis abranch named cmt,
4. lastly thereis asetup script within this cmt branch.
Thus the list of access pathsis searched for until these conditions are properly met.

12

The actual complete search list can always be visualized by the command:

> cnt show path

Add path /users/dsksi/arnaul t/dev from CMIPATH
Add path /exp/virgo/projects from CMIPATH

Add path /lal fromdefault path

Add path /tnp/arnault from current package

#
/

user s/ dsksi/arnaul t/dev:/exp/virgo/projects:/lal:/tnp/arnault

7 - Managing site dependent features- TheCMTSITE
environment variable.

Software bases managed by CM T are often replicated to multiple geographically distant sites (as
opposed to machines connected through AFS-like WAN). In thiskind of situation, some of the
configuration parameters (generally those used for instance to reference local installations of
external software) take different values.

The CMTSITE environment variable or registry in Windows environments, is entirely under the
control of the site manager and can be set up with a value representing the site (typical values
may be LAL, Virgo, Atlas, LHCb, CERN, etc.).

This variable, when set, corresponds to atag (with the same priority as CMTCONFIG) which
can be used to select different values for make macros or environment variables.

A typical usefor thistag isto build up actual valuesfor the location path of an external software
package. Here we take the example of the Anaphe utility:

macro AnapheTOP "" \
CERN "/afs/cern.ch/sw | hcxx" \
BNL "lafs/rhic/usatlas/offline/external/lhcxx" \
LBNL "/auto/atlas/sw | hcxx"

8 - Configuring a package.

Thefirst ingredient of a proper package configuration isthe set of configuration parameters
which has to be specified in atext file named requir ements and installed in the cmt branch of the
package local tree.

An empty version of thisfile is automatically created the first time the package isinstalled, and
the package manager is expected to augment it with configuration specifications.

Many configuration parameters are supposed to be described into this requirements file (one per
package) - see the detailed syntax specifications here - namely :

® the package information about its author(s) and manager(s)
e therelationships with other packages
® the package constituents (libraries, applications, documents, etc.)

13

® the parameterization of the tools used in the build process (eg. make macros)
® the parameterization of the run-time activity (eg. environment variables, search paths, etc.)

Generally, every such appropriate parameter will be deduced on demand from the reguirements
file(s) through the various queries functions available from the cmt main driver. Therefore there
is no systematic package re-configuration per se, besides the very first time a package in newly
installed in its location (using the cmt cr eate action).

Query actions (generally provided using the cmt show family of commands) are embedded in the
various productivity tools, such as the setup shell scripts, or makefile fragment generators.

These query actions always interpret the set of requirements files obtained from the current
package and from the packages in the effective used chain. Symbols, tags and other definitions
are then computed and built up according to inheritance-like mechanisms set up between used
packages.

Other configuration parameters are also optionally inserted from the HOME and USER context
requirements files

Most typical examples of these query functions are:
® cmt setup builds a shell command line for setting up environment variables

cmt show macr os construct the effective set of inherited make macros

cmt show uses gives the ordered and flattened set of used packages

cmt show constituents lists the package’ s constituents

cmt show path lists the effective search path for packages.

cmt show strategies shows the current setup of various functional CM T strategies.

9 - Selecting a specific configur ation.

A configuration describes the conditions in which the package has to be built (ie. compiled and
linked) or applications can be run. This configuration can depend on :

® the operating system (such as Linux, Windows, ...)

e the platform (such as Intel, Compag, Sun, etc...)

® the choice of the compiler (such asg++, egcs, CC, etc...)

® options used for compiling (such as optimizer, debugger, etc...) or linking

® the context specifications (selecting a particular version of afirmware, selecting a database

server, ...)

Carefully describing this configuration is essential both for maintenance operations (so asto
remember the precise conditions in which the package was built) and when the development area
is shared between machines running different operating systems.

9.1 - Describing a configuration.

CMT relies on several complementary conventions or mechanisms for this description and
the associated management.

14

® The basic binary specification automatically computed by CMT in the
${CMTROOT}/mgr/cmt_system.sh shell script.

This script automatically builds a value characterizing both the machine type and the
operating system type (using a mixing of the uname standard UNI X command with
various operating system specific definitions such as the AFS based fs sysname
command)

® The CMTCONFIG environment variable, filled in by default from the latter, but which
can be completely overridden either from the shell or from the requirements files

® The CMTSITE environment variable defines one additional configuration tag, which
characterizes the current site.

® The value given by the uname standard Unix facility is always avalid configuration
tag.

® The concept of user defined tag set. Tags are additional qualifiersfor the configuration,
they are entirely user defined, and have no a-priori semantics.

CMT definesthe concept of current tag set, as the set of currently active tags. And the
current active tag set can always be visualized using the cmt show tags command.

9.2 - Defining the user tags.

The user configuration tags can generally be specified though various complementary
means.

® CMTSITE and CMTCONFIG can be specified using standard shell commands (setenv,
export, set)

> export CMISI TE=CERN

e CMTSITE and CMTCONFIG can aternatively be specified using the set statement in a
requirementsfile

set CMISI TE " CERN'
set CMICONFI G "${CMIBI N} " sun "Sol ari s- CC- dbg"

® Additional tags may also be defined as a mixture of other tags, using the tag statement
(in arequirementsfile):

tag newtag tagl tag2 tag3

which means that:
O newtag defines a mixture of tagl tag2 tag3
O when newtag is active, then both tagl, tag2 and tag3 are simultaneously active

15

9.3 - Activating tags.

By default, only CMTCONFIG, uname and CMTSITE are active at any time.

Then it is possible to activate alternate tags through the following arguments to any cmt
command:

® -tag=<primary-tag>
will cleanup the complete current tag set, and provide the new main tag.
® -tag_add=<tag-list>
will add to the current tag set the tags specified in the comma separated list
® -tag remove=<tag-list>
will remove from the current tag set the tags specified in the comma separated list

Giving these arguments generally make the selected tag set active only during the selected
command. However if instead they are given to the sour ce setup.[c]sh command, then the
new active tag set becomes persistent for the current session.

The current active tag set can always be visualized using the cmt show tags command.

> cnmt show tags
Li nux
LAL

> cnt -tag_add=tagl,tag2,tag3 show tags
Li nux

LAL

tagl

tag2

tag3

> cnmt show tags
Li nux
LAL

> source setup.sh -tag_add=tagl,tag2,tag3

> cnmt show t ags
Li nux

LAL

tagl

tag2

tag3

> source setup.sh -tag_renove=tag2,tag3
> cnmt show t ags
Li nux

LAL
tagl

16

Typica usages of those extratags are:

when using special compiler options (e.g. optimization, debugging, ...)

for switching to different compilers (e.g. gcc versus the native compiler)

when one uses a specia debugging environment such as Insure or Purify

when using specia system specific features (such as whether one uses thread-safe
algorithms or not)

Due to the tag set concept, it is possible to specify, for instance, that although the current
context will still use the default binary tag (ie CMTCONFIG is not changed) a debug
environment is used.

sh> cd/Bar/vl/cnt
sh> . setup.sh -tag_add=debug

Then al symbol definitions providing specific values triggered by the debug selector will be
selected, such asin;

macr o_append cppflags "" \
debug " -g "

10 - Working on a package.

In this section, we'll see, through a quite simple scenario, the typical operations generally needed
for installing, defining and building a package. We are continuing the example of the Foo
package already used in this document.

10.1 - Workingon alibrary.

Let’sassume, as afirst example, that the Foo packageis originally composed of one library
libFoo.a itself made from two sources : FooA.c and FooB.c. A shared flavour of the library
libFoo.so0 or libFoo.d or libFoo.dll) is also foreseen.

The minimal set of branches provided by CM T (once the cmt cr eate operation has been
performed) for a package includes src for the sources and cmt for the Makefiles and other
scripts.

The varioustools CM T provide will be fully exploited if one respects the roles these
branches have to play. However it is always possible to extend the default understanding
CMT gets on the package by appropriate modifiers (typically by overriding standard
macros).

Assuming the conventional usage is selected, the steps described in this section can be
undertaken in order to actually develop a software package.

We first have to create the two source filesinto the src branch (typically using our favourite
text editor). Then adescription of the expected library (ie. built from these two source files)
will be entered into the requirementsfile. The minimal syntax required in our example will
be:

17

csh> cd ../cnt
csh> vi requirenents (1)
library Foo FooA. c FooB.c

1. therequirementsfilelocated in the cmt branch of the package receives the description
of thislibrary component. Thisis done using onelibrary statement.

The cmt create command did generate a simple Makefile (or NM ake file) which is generaly
sufficient for all standard operations, since CM T continuously and transparently manages
the automatic reconstruction of all intermediate makefile fragments. We therefore simply
and immediately execute gmake as follows:

...vl/cmt > [g] nake

Rebui | di ng cnt _pat h. nake [1]
Rebui | di ng constituents. nake [1]
Rebui I ding library Iinks [1]
Rebui | di ng set up. make [1]

al pha. make ok [2]

Li brary Foo [1]1[3]
starting Foo [4]
gmake[1]: Entering directory ‘/users/dsksi/arnault/ mydev/ Foo/vl/cnt

Rebui | di ng ../ al pha/ Foo_dependenci es. make [1]

grmeke[1]: Leaving directory ‘/users/dsksi/arnaul t/nydev/ Foo/vl/cnt
gmeke[1]: Entering directory ‘/users/dsksi/arnault/ mydev/ Foo/vl/cnt
Now rebui | di ng ../src/ FooA. pp

Now rebui |l ding ../src/FooB. pp

Foo : Protos ok

..l al phal/ FooA. o

cd ../alpha/; cc -¢c -1../src/ -1"../src/" -stdl -0 FooA. o ../src/FooA c
..l al phal/ FooB. o

cd ../alpha/; cc -¢c -1../src/ -1"../src/" -stdl -0 FooB.o ../src/FooB.c
l'ibrary

cd ../alpha/; ar -clr ../alphal/libFoo.a ../alpha/FooA o ../al pha/ FooB. o
ranlib ../al pha/libFoo.a

cat /dev/null >../al phal/Foo.stamp

cd ../alpha/; /lal/CMI/vlr10/ nmgr/cnt_make_shlib_comron. sh noextract al pha Foo
------ > Foo : library ok

------ > Foo ok

grmeke[1] : Leaving directory ‘/users/dsksi/arnaul t/nydev/ Foo/vl/cnt

al | ok.

or, for nmake:

...vl/cnt> nnake /f nnmeke

One sees from this example that :

1. Thevery first time this rebuilding operation occurs, some makefile fragments have
automatically been built so as to contain the extended set of Makefile macros deduced
from the effective configuration (read from the r equir ementsfile). These fragments are
automatically rebuilt (if needed) each time one of the requir ements file changes.

2. Thedirectory whichis used for the binaries (i.e. the results of compilation or the
libraries) has been automatically created by a generic target (di r s) which is defined

18

within [N]M akefile.header. A new binary directory will be created each time a new
value of the CMTCONFIG environment variable is defined or atag is provided on the
command line to make.

3. Each component of the package (be it aparticular library or aparticular executable)
will have its own makefile fragment (named ../${CM T CONFI G}/<name>.[n]mak[€]).
This dedicated makefile takes care of filling up the library and creating the shared
library (on the systems where thisis possible).

4. These dedicated makefiles are automatically executed from the main one, and the
standard make macro constituents can be redefined (e.g. in the requirementsfile) so as
to customize the building sequence.

This mechanism relies on some conventional macros and incremental targets used within
the specific makefiles. Some are automatically generated, some have to be specified in user
packages. It’ s quite important to understand the list of possible customization macros, since
this is the main communication medium between CM T and the package manager. See the
complete table of those conventional macro when you want to interact with the standard
CMT behaviour.

10.2 - Working on an application

Assume we now want to add a test program to our devel opment. Then we create a FooTest.c
source, and generate the associated makefile (specifying that it will be an executable instead
of alibrary) :

csh> cd ../src
csh> emacs FooTest.c

csh> cd ../cnt
csh> vi requirements

application FooTest FooTest.c

So that we may simply build the complete stuff by running :

> [g] make
Checki ng configuration
Rebui | di ng cnt _pat h. nake
Rebui | di ng constituents. nake
Rebui | di ng set up. nake
Rebui | di ng al pha. make
al pha. make ok
------ > starting FooTest
Application FooTest
gmake[1]: Entering directory ‘/users/dsksi/arnault/ mydev/ Foo/vl/cnt
Rebui | di ng FooTest _dependenci es. nake
gmaeke[1]: Leaving directory ‘/users/dsksi/arnaul t/nydev/ Foo/vl/cnt
gmeke[1]: Entering directory ‘/users/dsksi/arnault/ mydev/ Foo/vl/ cnt
Now rebui |l ding ../src/FooTest. pp
FooTest : Protos ok
cd ../alphal/; cc -c -1../src/ -I1../src/ -stdl ..1src/ FooTest.c
cd ../alphal/; cc -0 FooTest. exe. new ../al pha/ FooTest. o o\
nv -f FooTest. exe. new FooTest . exe

19

------ > FooTest ok

gmake[1] : Leaving directory ‘/users/dsksi/arnaul t/ mydev/Foo/vl/ cnt’
------ > all ok.

Which shows that a program FooT est.exe has been built from our sources. Assuming now
that this program needs to access the Foo library, we'll just add the following definition in
therequirementsfile:

macro Foo_linkopts " -L$(FOOROOT)/$(Foo_tag) -IFoo " \
W N32 " $(FOOROOT)/ $(Foo_tag)/Foo.lib "

The Foo_linkopts conventional macro will be automatically inserted within the
use_linkopts macro.

Like al other make macros used to build a component, the Foo_linkopts will be specified
within the r equirements which gives several benefits:

® variants of the macro definition can be provided

® monitoring features of CM T such as the cmt show macro Foo_linkopts command can
be used later on

® macros defined this way may be later on inherited by client packages which will use
our package.

10.3 - Working on atest or external application

It isaso possible to work on atest or external application, ie. when one does not wish to
configure the development for this application using CMT. Evenin this casg, it is possible
to benefit from the packages configured using CM T by partially using CM T, just for used
relationships.

Here, no specia convention is assumed on the location of the sources, the binaries, the
management scripts, etc... However, it is possible to describe in arequirementsfile the use
relationships, as well asthe make macro definitions, quite similarly to the package entirely
configured using CMT.

Most of the options provided by the cmt user interface are still available in these conditions.

10.4 - Construction of a global environment

A software base generally consists in many packages, some of them providing libraries or
documents, others providing applications, some providing both, some providing just glues
towards external software products.

On another view, this software base may amix of packages shared between several projects

and sets of packages specific to various projects. One may have several software bases as
well (combined using the CMTPATH environment variable).

20

In such contexts, it is often desirable that a given project defines its own selection of all
existing packages. This can easily be donewith CMT by defining a project package,
containing only use statements towards the appropriate selection of packages for this
particular project.

Let’s consider as an example the project named MyPr oj ect. We may create the package
named MyProject similarly to any other package:

csh>cd
csh> cnt create MyProject vl

Then the requirementsfile of this new package will simply contain a set of use statements,
defining the official set of validated versions of the packages required for the project. This
mechanism al so represents the notion of global release traditionally addressed in
configuration management environments

package MyProj ect

use Cmv7r6

use Db v4r3

use El v4r2

use Su vb5

use DbU vi1r2 Db

use ElU virl E

use VSUU v3 Su/VsU
use VWM vi

use VPC v3

setup_script set_path
cl eanup_script reset_path

In this example we have also specified that this global environment will provide an
additional setup script (found by default in $§{MYPROJECTROOT}/cmt/set_path.csh)
and containing specific shell commands.

Then any user wanting to access the so-called official release of the package set appropriate
to the project MyProject will simply do (typically within its login shell script) :

a login script

source / MyProj ect DevArea/ MyProj ect/vl/cnt/setup.csh

Later on, future evolutions of the MyProject package will reflect progressive integration
steps, which validate the evolutions of each referenced package.

21

11 - Defining a document gener ator

In aUnix environment, documents are built using make (well generally its gnu flavour) or
nmake in Windows environments. The basic mechanism provided in CM T relies on make
fragment patterns containing instructions on how to rebuild document pieces. Many such
generators are provided by CMT itself so asto take care of of the most usual cases (e.g.
compilations, link operations, archive manipulations, etc...). In addition to those, any package has
to possibility to provide a new generator for its own purpose, i.e. either for providing rules for a
special kind of document, or even to override the default ones provided by CMT. This
mechanism is very similar to the definition or re-definition of macros or environment variablesin
that every new generator has to be first declared in arequirementsfile belonging to a package
(CMT actually declares its default generators within itsrequirementsfile), allowing al its client
packages to transparently acquire the capacity to generate documents of that sort.

CMT manages two categories of constituents:
1. Applications and Libraries are handled using pre-defined make fragments (mainly related
with languages) and behaviour.
2. Documents offer a quite general framework for introducing completely new behaviours
through user-defined make fragments. This includes actually generating documents, but also
simply performing an operation (in which case sometimes no real document is produced).

In this section we only discuss the latter category and the following paragraphs explain the
framework used for defining new document types.

The main concept of this framework is that each document to be generated or manipulated must
be associated with a"document-type" (also sometimes named "document-style"), which
corresponds to a dedicated make fragment of that name. Then, when specified in adocument
statement, this make fragment will be instanciated once or several times (typically once per
source file) to construct a complete and functional make fragment, containing one main target.
Both the resulting make fragment and the make target will have the name of the constituent.

11.1 -

11.2 - How to create and install a new document style

This section presentsthe general framework for
designing a document generator.

1. Select anamefor the document style. It should not
clash with existing ones (use the cmt show fragments
for a completelist of document types currently
defined).

22

2. A fragment exactly named after the document style
name must beinstalled into a subdirectory named
fragments below the cmt branch of a given package
(which becomesthe provider package).

3. Optionally, two other fragments may beinstalled
into the same subdirectory, one of them will be the
header of the generated complete fragment, the other
will itstrailer

4. It must bedeclared in therequirementsfile of the
provider package asfollows:

nake_fragment <fragnment-name> [options...]

wher e options may be:

-suffix=<suffix> | providethe suffix of the output files (without the dot)

provide another make fragment meant to be prepended to the

-header=<header> . ;
constituent’s make fragment.

provide another make fragment meant to be appended to the

-trailer=<trailer> .
constituent’s make fragment.

install the automatic generation of dependenciesinto the

-dependencies | . dfituent's make fragment

Onceafragment isinstalled and declared, it may be
used by any client package (ie a package using the
provider), and queried upon using the command

> cmt show fragment <fragment name>

which will show wherethisfragment isdefined (ie. in
which of the used packages).

The cmt show fragments commands lists all declared
fragments.

23

|f a package re-defines an already declared make

fragment, ieit provides a new copy of the fragment (possibly
with new copies of the header and thetrailer), and declaresit
insideitsrequirementsfile, then this package becomesthe new

provider for the document style.

For building a fragment, one may use pre-defined
generic "templates’ (which will be substituted when a
fragment is copied into the final constituent’s makefile).

CONSTITUENT the constituent name

CONSTITUENTSUFFIX | an optional constituent’s output suffix

FULLNAME the full source path name (including directory and suffix)
FILENAME the complete sour ce file name (only including the suffix)
NAME the short source file name (without directory and suffix)
FILEPATH the source directory

SUFFIX the suffix provided in the -suffix option

(only availablein headers) thelist of outputs, formed by a set of

expressions:
OBJS

$(${ CONSTI TUENT} _out put) ${ NAVE} ${ SUFFI X}

Templates must be enclosed between ${ and } and will
be substituted at the generation time. Thus, if a fragment
contains thefollwing text :

$(${ CONSTI TUENT} _out put) ${ NAVE} ${ SUFFI X}

then, the expanded constituent’s makefile will contain
(referingtothe " tex" example)

$(MyDoc_out put) docl. ps

Which showsthat make macros may be dynamically
gener ated.

24

[IMAGE]

The architecture of document generation.

11.3 - Examples
1. rootcint

|t generates C++ hubsfor the Cint interpreter in
Root.

=—======== r oot ci nt
(src){NAME}. cc :: ${FULLNAVE}
${rootcint} -f (src){NAVE}.cc -c ${ FULLNAME}

2. agetocxx and agetocxx_header .

It generates C++ sour ce files (xxx.g files) from Atlas
AGE description files.

———=—=—==== age[ocxx
out put =$(${ CONSTI TUENT} _out put)

$(out put) ${NAME}. cxx : $(${ NAME} _cxx_dependenci es)
(echo "#line 1 "${FULLNAME}"’; cat ${FULLNAMVE}) > /tnp/ ${NAVE}. gh.c
gcc -E -1$(output) $(use_includes) -D GNU_SOURCE \
cd ${output}; $(agetocxx) -o ${NAME} -ohd ${FI LEPATH} \
-ohp ${FI LEPATH} /tnp/ ${ NAVE}. gh
rm-f /tnp/ ${NAME}. gh /tnp/ ${NAVE}. gh. c
cd $(bin); $(cppconp) $(use_cppflags) $(${CONSTI TUENT} cppflags) \
$(${NAVE} cppflags) ${ADDI NCLUDE} $(out put)${NAVE}. cxx
cd $(bin); $(ar) $(${CONSTI TUENT}I i b) ${NAME}.o0; /bin/rm-f ${NAME}. o

—======== agetocxx_header
${ CONSTI TUENT} | i b

${ CONSTI TUENT} st anp
${ CONSTI TUENT} shst anp

$(bi n) i b${ CONSTI TUENT}. a
$(bi n) ${ CONSTI TUENT} . st anp
$(bi n) ${ CONSTI TUENT} . shst anp

${ CONSTI TUENT} :: dirs ${CONSTI TUENT} LI B
@ bi n/ echo ${ CONSTI TUENT} ok

${ CONSTI TUENT} LI B :: $(${ CONSTI TUENT}| i b) $(${ CONSTI TUENT} shst anp)
@ bi n/ echo ${ CONSTI TUENT} : library ok

$(${ CONSTI TUENT} | i b) $(${ CONSTI TUENT} st anp) :: ${OBJS}
$(ranlib) $(${CONSTI TUENT}! i b)
cat /dev/null >$(${CONSTI TUENT} st anp)

$(${ CONSTI TUENT} shst anp) :: $(${ CONSTI TUENT} st anp)

25

cd $(bin); $(make_shlib) $(tag) ${CONSTI TUENT} \
$(${ CONSTI TUENT} shl i bfl ags); \
cat /dev/null >$(${CONSTI TUENT} shst anp)

It must be declared as follows:;

make_fragnent agetocxx -suffix=cxx -dependenci es -header=aget ocxx_header

12 - Thetoolsprovided by CMT

The set of conventions and tools provided by CMT ismainly
composed of :

e the syntax of therequirementsfile,

o and the general cmt user interface, availablein the mgr
branch of the CMT package.

The setup script found in the CMT installation directory
actually addsitslocation to the definition of the standard
UNIX PATH environment variablein order to give direct
accessto the main cmt user interface.

The sections below will detail the complete syntax of the
requirementsfilesinceit isthe basis of most infor mation
required to run the tools as well asthe main commands

available through the cmt user interface.

12.1 - Therequirementsfile

12.1.1 - The general requirements syntax

e A requirementsfileismade of statements, each
describing one named configuration parameter .

26

Statements gener ally occupy one single line, but may
be split into several linesusing the rever se-slash character (in

thiscasethereverse-dash character must bethelast
character on thelineor must be only followed by space
characters).

Each statement is composed of words separated with
spaces or tabulations,

Thefirst word of a statement isthe name of the
configuration parameter.

Therest of the statement providesthe value assigned
to the configuration parameter.

e Words composing a statement ar e separated with
space or tab characters. They may also be enclosed in quotes
when they haveto include space or tab characters. Single or
double quotes may be freely used, aslong asthe same type of

guoteisused on both sides of theword.

Special characters (tabs, carriage-return and
line-feed) may beinserted into the statements using an
XML -based convention:

tabulation <cnt:tab/>
carriagereturn <cnt:cr/>

line-feed <cmt:|f/>

o Comments: they start with the # character and
extend up to the end of the current line.

12.1.2 - The complete requirements syntax

27

12.2 - The concepts handled in the requirementsfile
12.2.1 - Meta-information : author, manager
The author and manager names
12.2.2 - package, version

The package name and version. Thes statementsare
purely informational.

12.2.3 - Constituents: application, library, document

Describe the composition of a constituent. Application
and library correspond to the standard meaning of an
application (an executable) and alibrary, while
document providesfor a quite generic and open
mechanism for describing any type of document that
can be generated from sour ces.

Applicationsand libraries are assigned a name (which
will correspond to a generated make fragment, and a
dedicated make target).

A document isfirst associated with a document type
(which must correspond to a previously declared make
fragment). The document nameisthen used to namea
dedicated make fragment and a make tar get.

Various options can be used when declaring a
constituent:

28

option validity usage
When used in a Windows environment,
-windows applications | generatesa GUI-based application (rather
than a console application)
-no_share libraries do not generatethe shared library
_no_static libraries QO not generatethe static library (not yet
implemented)
i applications, .
prototypes libraries do generate the prototype header files
-no_prototypes a_1pp||c_at|ons, do not generate the prototype header files
libraries
_check lications | 9€N€" ate a check target meant to executethe
app rebuilt application
_ install the constituent within thisgroup
-group=group-name any
tar get
o lications, rovide a suffix to names of all object files
-suffix=suffix ap P)
- libraries generated for this constituent (see 1 below)
lications explicitly import for this constituent the
-import=package Iailglrjaries " | standard macros from a package that has

the-no_auto_imports option set

variable-name=variable-value

any

defineavariable and its value to be given to
the make fragment (see 2 below)

1. When several constituents need to share sour cefiles,
(atypical exampleisfor building different libraries
from the same sour ces but with different compiler
options), it is possible to specify an optional output
suffix with the -suffix=<suffix> option. With this
option, every object file name will be automatically
suffixed by the character string " <suffix>", avoiding
name conflicts between the different targets, asin the
following example:

library AXt

-suf fi x=Xt
library AXaw -suffix=Xaw *. cxx

*,CXX

29

2. It'spossible to specify in thelist of parametersone or
mor e pairs of variable-name=variable-value (without

any space charactersaround the" =" character),
such asin the next example;

nmake_fragnent doc_to _htn (1)

docunent doc_to_htm Foo out put =FooA. html FooA. doc (2) (3)

1. Thismakefile fragment ismeant to contain some
text conversion actions and defines a document
type named doc_to_html.

2. Thisconstituent exploitsthe document type
doc_to _html to convert the source FooA.doc into
an html file.

3. Theuser defined template variable named output
Is specified and assigned the value FooA.html. If
the fragment doc_to_html containsthe string
${output}, then it will be substituted to thisvalue.

12.2.4 - Groups

Groups per mit the or ganization of the constituents that
must be consistently built at the same development
phases or with similar constraints.

Each group isassociated with a make target (of the
same name) which, when used in the make command,
selectively rebuilds all constituents of this group.

The default group (into which all constituentsare
installed by default) isnamed all, therefore, running
make without argument, activatesthe default target (ie.
all).

30

Asatypical usage of this mechanism, one may

examplify the case in which one or several constituentsare
making use of one special facility (such as a database service,
real-time features, graphical libraries) and therefore might

require acontroled re-build. Thisis especially useful for
having these constituents only rebuilt on demand rather than
rebuilt automatically when the default make command isrun.

One could, for instance specify within the requirements
file:

ot her constituents without group specification..
library Foo-objy -group=objy <sources nmaki ng use of Cbjectivity>

appl i cati on FooGU -group=graphics <sources maki ng use of Q>

(Beware of the position of the -group option which must
be located after the constituent name. Any other position
will be misunderstood by CMT)

Then, running gmake all would only rebuild the
un-grouped constituents, whereasrunning

> gnmake objy
> gmake graphics

in the context of the Foo package would rebuild objy
related or graphicsrelated constituents.

12.2.5 - Languages

Some computer languages are known by default by
CMT (C, C++, Fortran77, Java, lex, yacc). However it is
possibleto extend this knowledge to any other langage.

We consider herelanguagesthat are ableto produce
object files from sour ces.

31

L et’stake an example. Wewould liketo install support
for Fortran90. Wefirst haveto declare this new
language support to CM T within the requirementsfile
of one of our packages (Noticethat it’snot at all required to
modify CMT itself sinceall clients of the selected
package will inherit the knowledge of thislanguage).

The language support issimply named fortran90 and is
declared by the following statement:

| anguage fortran90 \

-suffix=f90 -suffix=F90 \ [1]
-1inker=$(f90link) \
- preprocessor _conmrand=$(ppcnd)

1. Therecognized suffixesfor sourcefileswill be f90
and F90

2. Thelinker command used to build a Fortran90
application isdescribed inside the macro named
f90link (which must defined in thisrequirementsfile

but which can also be overridden by clients)

Thelanguage support being named fortran90, two
associated make fragments ar e expected, one under the
name fortran90 (for building application modules), the
other with the namefortran90 library (for modules
meant to be ar chived), both without extension.

These two fragments should beinstalled in the
fragments sub-directory of the cmt/mgr branch of our
package.

Dueto the similarity of the exampleto fortran77, we
may easily provide the expected fragments simply by
copying thef77 fragmentsfound in CMT (thusthe
fragments {CM TROOT }/fragments/fortran and
${CMTROOT}/fragments/fortran_library

32

These fragments make use of the fcomp macr o, which
holdsthe fortran77 compiler command (through the for
macr o).

macro for "f77T N

ﬁﬁéro fconp "$(for) -c $(fincludes) $(fflags) $(pp_fflags)"

We therefore simply replace these macros by new
macr os named f90comp and 90, defined as follows:

macro f90 "fo0"

macro f90conp "$(f90) -c $(fincludes) $(fflags) $(pp_fflags)"

Some languages (this has been seen for examplein the
IDL generatorsin Corba environments) do provide
sever al object filesfrom one unique sourcefile. It is
possibleto specify thisfeaturethrough the (repetitive)
-extra_output_suffix option likein:

| anguage idl -suffix=idl -fragment=idl -extra_output_suffix=_ske

where, in this case, two object filesare produced for
each I DL sourcefile, one named <name>.o the other
named <name>_skel.o.

12.2.6 - Symbols: alias, set, set_append, set_prepend, set_remove,
macr o, macro_append, macro_prepend, macro_remove,
macro_remove all, path, path_append, path_prepend,
path_remove

Thealiaskeyword istrandated into a shell alias
definition,

The set keyword istrandated into an environment
variable definition.

33

The macro keyword istranslated into a make’s macro
definition.

The path keyword istrandated into a path-like
environment variable, which is supposed to be composed of
sear ch paths separated with colon characters(’:’). However,
its highly recommended to construct such a variable by
iteratively concatenate individual items one by one using
path_append or path_prepend

Variants of these keywords are also provided for
modifying already defined symbols. This generally happens

when a package needsto modify an inherited symboal (ie.
which has been already defined by a used package). Through

these keywords (set_append, set_prepend, set_remove,
macro_append, macro_prepend, macro_remove,
macro_remove all, path_append, path_prepend,
path_remove) one can append or prepend atext tothe
existing symbol value or remove a part from it. The
path_remove keyword removes all individual search
pathsthat contain the specified sub-string.

Thetrandations occur whilerunning either the setup
scripts (for alias, set or path) or the make command (for
macr o).

All these definitions follow the same pattern:

synbol -type synbol - name default-value [tag value ...]

The symbol-name identifies the symbol for modification
oper ations. The default-valueis optionally followed by a
set of tag/value pairs, each representing an alter nate
value for this symbal.

34

Thetagisused to select one alternate value to replace
the default value, when one of the following condition is met:

e It matchesthevalue of the CM TSI TE environment
variable (or registry)

e It matchesthe value provided by the uname Unix
command (when available)

e It matchesthevalue of the CMTCONFIG
environment variable (or registry)

e It matchesthe value specified in the -tag=tag-list
argument to the cmt command.

e It matchesone user defined tag (seethetag keywor d)
which itself isassociated with a matching tag (Note
that thisisarecursive definition).

Examples of such definition are:

package CMI
set CMICC "cc" \
HP- UX "cc -Aa +z -D HPUX_SOURCE"
public
macro cfl ags "og"
HP- UX "-g -Aa +z -D HPUX_ SOURCE" \
hp700_ux101 "-g -fpic -ansi" \
al pha "-g -stdl" \
al phat "-g -stdl - DCTHREADS" \
i nsure "-g -Zuse -stdl" \
Al X "-g -D ALL_SOURCE - D BSD'

macro cppfl ags -g" o\
HP- UX "-g -Aa +z" \
"g

hp700_ux101 -fpic"
macro fflags "-g"
macro src "“..Ilsrc/"
macro inc “..Ilsrc/"
macro ngr "..olemt /"

macro SHELL "/ bi n/sh"

35

12.2.7 - use

Describe the relationshipswith other packages; the
generic syntax is:

use <package> [<version> [<root>]]

Omitting the ver sion specification meansthat the most
recent version (ie. the one with highest ids) that can be
found from the serach path list will be automatically
selected.

Theroot specification can berelative (ie. on Unix it does
not contain aleading’/’ character). In thiscase, this
prefix is systematically consider ed when the packageis
looked for in the search path list. But it can also be
absolute (ie. with aleading '/’ character on Unix), in
which case this path takes precedence over the standard
search path list (see CMTPATH).

Examples of such relationshipsare:

Packages installed in the default root :
use OnX v5r2

use CSet v2r3

use G v2rl

A package installed in a root one step below the root :
use CS v3rl virgo

Back to the default root :
use Cmv7r3

CGet the nost recent version of CERNLIB

use CERNLIB
By default, a set of standard macr os, which are expected
to be specified by used packages, isautomatically
imported from them (seethe detailed list of these
macr 0s). Thisautomatic feature can be discarded using
the

36

-n0_auto_importsoption to the use statement, or
re-activated using the

-auto_imports. When it isdiscar ded, the macros will not
be transparently inherited, but rather, each individual
constituent willing to make use of them will have to explicitly
import them using the -import=<package> option.

12.2.8 - pattern, apply_pattern, ignore_pattern

Often, ssimilar configuration items are needed over a set
of packages (sometimes over all packages of a project).
Thisreflectseither similarities between packages or

generic conventions established by a project or ateam.

Typical examples arethe definition of the search path
for shared libraries (through the LD _LIBRARY_PATH
environment variable), the systematic production of test
applications, etc.

The concept of pattern proposed hereimplementsthis

genericity. Patterns may be either global, in which case
they will be systematically applied onto every package,

or local (the default) in which case they will be applied

on demand only by each package.

The general principle of a pattern isto associate a
templated (set of) cmt statement(s) with the pattern
name. Then every timethe pattern isapplied, its
associated statementsare applied asif they weredirectly
specified in the requirementsfile, replacing thetemplate
with itscurrent value. If several statementsareto be
associated with a given pattern, they will be separ ated
with the" ; " separator pattern (beware of really
enclosing the" ;" between two space characters).

37

Patter n templates ar e names enclosed between the’<’
and ">’ characters. A set of predefined templatesare
automatically provided by CMT:

package the name of the current package

the name of the current package in upper

PACKAGE

case
version theversion tag of the current package
path the access path of the current package

Then, in addition, user defined templates can be
installed within the pattern definitions. Their actual value will

be provided as argumentsto the apply pattern statement.

User defined templatesthat have not been assigned a
value when the pattern isapplied are simply ignored.

Some examples:
1. Changing the standard include search path.

The standard include path is set by default to
${<package> root}/src. However, often projects need
to override this default convention, and typical
exampleisto set it to a branch named with the
package name. This convention is easily applied by
defining a pattern which will apply theinclude_path
statement as follows:

pattern -global include_path include_path ${<package>_root}/<package>/

For instance, a package named PackA will expand
this pattern asfollows:

i ncl ude_pat h ${PackA root}/PackA/

38

2. ProvidingavaluetotheLD_LIBRARY_PATH
environment variable

On some oper ating systems (eg. L inux), shared
library paths must be explicited, through an
environment variable. Thefollowing pattern can
automate this operation:

pattern Id_library_path \

path_renmove LD LI BRARY_PATH "/ <package>/" ; \

pat h_append LD LI BRARY_PATH ${ <PACKAGE>ROOT}/ ${ CMTCONFI G
In this example, the pattern was not set global, so
that only packages actually providing shared
libraries would be concerned. These packages will

simply haveto apply the pattern asfollows:

apply_pattern Id_library_path

The schema installed by this pattern providesfirst a
cleanup of theLD_LIBRARY_PATH environment
variable and then the new assignment. Thischoiceis
useful in thiscase to avoid conflicting definitions
from two different versions of the same package.

3. Installing a systematic test application in all packages

Quality assurance requirements might specify that
every package should provide atest program. One
way to enforcethisisto build a global pattern
declaring this application. Then every make
command would naturally ensureits actual presence.

pattern quality_test application <package>test <package>test.cxx <other_sources>

In this example, an additional pattern
(<other _sources>) permitsthe package to specify
extra sourcefilesto thetest application (the pattern

39

assumes at least one sour ce file <package>test.cxx).
12.2.9 - branches

Describe the specific directory branchesto be added
while configuring the package.

branches <branch-nane> ...

These brancheswill be created (if needed) at the same
level asthe cmt branch. Typical examples of such
required branches may beinclude, test or data.

12.2.10 - build_strategy, version_strategy

User s can control the behaviour of CMT through a set
of strategy specifications. The current implementation
only provides such control over two mechanisms::

e theway version tagsareinterpreted and compared
to each other.

Thefollowing keywords are available:

Thisisthe default behaviour. Version tagstruely consider major
best_fit ids, minor ids and patch idswith their complete backward
compatibility semantics

Same as best_fit except that different major ids are not seen as
best_fit_no_check |incompatible. The greatest id (for major, minor and patch ids) is

always selected
first_choice Thefirst version tag specified in the use chain is selected
last_choice Thelast version tag specified in the use chain is selected
keep_all Internal useonly : all referenced versions are kept

o theway makefile fragmentsfor applicationsand
libraries are generated.

40

Currently this only concernsthe automatic
generation of prototype header filesfor C sourcefiles. Thus

only one keyword ispossible : prototypes (and its
opposite no_prototypes), the default CM T behaviour
being to generate prototype headers.

12.2.11 - setup_script, cleanup_script

Specify user defined configuration scripts, which will be
activated together with the execution of the main setup
and cleanup scripts.

The script names may be specified without any access
path specification, in this case, they arelooked for in the
cmt or mgr branch of the package itself. They may also
be specified without any .csh or .sh suffix, the
appropriate suffix will be appended accordingly when
needed. Therefore, when such a user configuration
script isspecified, CM T expectsthat the corresponding
shell scriptsactually exist in the appropriate directory
(the cmt branch by default) and isprovided in whatever
format isappropriate (thus suffixed by .csh and/or .sh).

12.2.12 - include_path

Overridethe specification for the default include search
path, which isinternally set to ${<package> root}/src.

Specifying the value none (areserved CMT keyword)
means that no default include sear ch path is expected
from CMT, and thusno -1 compiler option will be

gener ated by default (generally this meansthat user
include sear ch paths should be specified viainclude dirs
instead).

41

12.2.13 - include dirs

Add specificationsfor non-standard include access
paths.

12.2.14 - make fragment

This statement specifies a specialized makefile fragment,
used as a building brick to construct the final makefile
fragment dedicated to build the constituents.

Therearebasically three categories of such fragments:

1. someareprovided by CMT itself (they correspond to
itsinternal behaviour)

2. othershandlethe language support

3. and thelast serve as specialized document
generators.

Thefragmentsdefined in CMT can be:

e those used to construct the application or library
constituents. Thelr semantic is standardized (they are
all associated with a language statement in the CMT
requirementsfile).

c c_library cpp cpp library lex lex_library fortran
fortran_library yacc yacc library jar jar _header
java java_copy java _header check java

cleanup _java

e those used internally by CMT as primary building
blocks for assembling the makefile. (Generally
developer s should not see them).

cleanup_objects application make setup nmake
constituent application_header constituents _header
buildproto protos header 0s9 header dependencies

42

check_application dependencies and triggers
check _application_header document_header library cleanup

library header cleanup application library no_share
cleanup_header make header make setup cleanup library

make_setup _header

e some document generator s which may be used if
needed, but are not mandatory:

installer installer _header readme readme_header
readme trailer readme_use dvi tex generator
generator_header

e those used to generate configuration filesfor
M SVisualC++:

dsp_windows header dsw_all _project

dsw_all project_dependency

dsw_all project header dsw_all project trailer
dsw_header dsw_project dsw_trailer dsp all
dsp_application_header dsp _contents

dsp library header dsp shared library header
dsp trailer

L anguage fragments should provide two forms, one for
the applications (in which case they are named exactly
after the language name eg c, cpp, fortran) and the
other for thelibraries (in which case they havethe
_library suffix (eg. c_library, cpp_library,
fortran_library). A set of language definitions (C, C++,
Fortran, Java, Lex, Yacc) isprovided by CMT itself but
it isexpected that projectsadd new languages according
to their needs. Event if the make fragment meant to be
the implementation of a language support isdeclared,
the language support itself must be declared too, using

43

the language statement

All make fragments are provided as (suffixless) files
which must belocated in the fragments sub-directory
inside the cmt/mgr branch of one package. They must also be
declared in therequirementsfile (through the

make fragment statement) so asto bevisible.

A package declaring, and implementing a make
fragment may override a fragment of the same name when it
isalready declared by a used package. Thisimpliesin
particular that any package may freely override any
make fragment provided by CMT itself (although in this
case a deep under standing of what the original fragment does
isrecommended).

M akefile fragments may take any form convenient to
the document style, and some special pre-built templates (see
the appendix) can be used in their body to represent
running values, meant to be properly expanded at actual
generation time:

CONSTITUENT | the constituent name

FULLNAME the full source path

FILENAME the sour ce file name without its path

the sour ce file name without its path and

NAME suffix

FILESUFFI X the dotted file suffix

FILEPATH the output path

SUFFIX the default suffix for output files

12.2.15 - public, private

I ntroduce a section for public or private symbols (meant
to be implemented as environment variables or aliases

a4

in a Unix environment or aslogical namesor symbolsin
aVMSone). Macrosto be used within makefiles can

also be defined at thislevel. Public symbols are meant to be
exported to any external user of the package whereas private
ones are only defined for the package developper.
Currently the selection between these two categoriesisdone
when the setup script isexecuted : if it is executed while

actually being in the cmt branch of the package, the
developper category isassumed. If the script isexecuted from

another directory the user category isassumed.

12.2.16 - tag
Provide tag definitions.

A tag isatoken which can be used to select particular
values of symbols. Generally a tag need not being
explicitly declared, sincethereferenceto it will declare
the tag automatically. However, tags may be used to
name a particular association of several other tags. In
this case, thisassociation must be declared within a
requirementsfile asfollows:

tag <associ ation-tag-name> <tagl> <tag2> ...

eg:

tag Li nux- gcc Li nux gcc

Thisdefinition impliesthat when Linux-gcc istrue, then
both Linux and gcc aretrue,

Thiscan be exploited to trigger via only onetag, the
activation of several individual tags, each signing a
particular condition (in our example the debug
condition and the Linux environment).

45

However, it isalways possible to dynamically associate
sever al tags by using the tag-list-style of argumentsto
the -tag=<tag-list> optionsto the cmt command driver (such
asin cmt setup -tag=Linux,debug)

Tags or associations of tags are propagated using the
-tag=<tag-list> optionsto the cmt command driver, but the
M ake command can also accept them through the
conventional macr os $(tag) and $(extra tags). However,

the $(tag) macro itself can only accept one value (instead
of alist), and thereforein order to give alist of additional tags,

one should use the $(extra_tags) (such asin gmake
tag=Linux extra tags=debug)

Finally, running the setup script (through the source
setup.[c]sh or call setup.bat command) can also receive
tag specifications using the -tag=tag-list options.

12.3 - Thegeneral cmt user interface

This utility (a shell script combined with a C application)
provides a centralised accessto various commandsto the
CMT system. Thefirst way to usecmt isto run it without
argument, thiswill print a minimal help text showing the
basic commands and their syntax :

> cmt conmmand [option...]

conmmand :
broadcast [-select=list] [-exclude=list] [-local] [-depth=n]
[-global] [-begin=pattern]
[-all _packages] <conmand> : apply a conmand to [sone of] the used packages
build <key> : build various conponents :
constituent _nakefile : generate Makefile
constituents_nakefile : generate constituents. make
dependenci es . generate dependenci es
library_links : build synbolic links towards all inported libraries
make_set up : build a conpiled version of setup scripts
nmsdev . generate MSDEV files
0s9_nekefile . generate Makefile for 0OS9
prot ot ype : generate prototype file
readne : generate README. htni

tag_nekefile . generate tag specific Makefile

46

check <key> : performvarious checks

configuration : check configuration

files <old> <new> : conpare two files and overrides <old> by <new> if different

version <nane> : check if a name follows a version tag syntax
check_files <ol d> <new> : conpare two files and overrides <ol d> by <new> if different
checkout . performa cvs checkout over a CMI package
co . performa cvs checkout over a CMI package
cl eanup [-csh|-sh|-bat] : generate a cleanup script
config . generate setup and cl eanup scripts
create <package> <version> [<path>] : create and configure a new package
filter <in> <out> : filter a file against CMI macros and env. vari abl es
hel p : display this help
| ock . lock the current package
| ock <package> <version> [<path>] : lock a package
renmove <package> <version> [<path>] : renpve a version of a package
renove library_links : renmove synbolic links towards all inported libraries
run <command> . apply a command
setup [-csh|-sh|-bat] : generate a setup script
show <key> . display various infos on

aut hor . package author

branches . added branches

clients : package clients

constituent _nanes : constituent nanes

constituents : constituent definitions

uses : the use tree

fragnent <name> : one fragnment definition

fragments : fragment definitions

groups : group definitions

| anguages : language definitions

macro <nanme> : a formatted macro definition

macro_val ue <nanme> : a raw nacro definition

macr os : all macro definitions

manager : package manager

packages : packages reachable fromthe current context

path . the package search |ist

pattern <name> : the pattern definition and usages

patterns : the pattern definitions

pwd : filtered current directory

set _value <name> : a raw set definition

set <nane> : a formatted set definition

sets : set definitions

strategies : all strategies (build & version)

t ags : all defined tags

uses : used packages

version : version of the current package

versions <name> . visible versions of the selected package
system : display the systemtag
unl ock : unlock the current package
unl ock <package> <version> [<path>] : unlock a package
version . version of CMI
cvstags <nodul e> : display the CVS tags for a nodul e
cvsbranches <nodul e> : display the subdirectories for a nodul e

cvssubpackagess <nmodul e> : display the subpackages for a nodul e
gl obal option

- qui et : don't print errors

- use=<p>: <v>: <pat h> . set package version path

- pack=<package> : set package

-versi on=<ver si on> : set version

- pat h=<pat h> : set root path

-f=<requirenent-file> : set input file

- e=<st at enent > : add a one line statenent

- hone=<di rectory> : find a honme requirenments file there
-tag=<tag-list> . select specific tag(s)

The following sections present the detail of each available
command.

a7

12.3.1 - cmt broadcast [-select=list] [-exclude=list] [-local] [-global]
[-begin=pattern] [-depth=<n>] [-all _packages] <shell command>

Thiscommand triesto repeatedly execute a shell
command in the context of each of the used package of
the current package. The used packagesarelisted using
the cmt show uses command, which also indicatesin
which order the broadcast is performed. When the
all_packages option, the set of packagesreached by the
broadcast israther the same asthe one shown by the
cmt show packages command, ieall CMT packages and
versions available throught the current CMTPATH list.

Typical uses of this broadcast operation could be:

csh> cnt broadcast cnt config
csh> cnt broadcast - gnake
csh> cnt broadcast '(cd ../; cvs -n update)’

Theloop over used packageswill stop at thefirst error
occurencein the application of the command, except if
the command was preceded by a’-’ (minus) sign
(smilarly to the make convention).

It ispossibleto specify alist of selection or exclusion
criteria set onto the package path, using the following
options, right after the broadcast keyword. These
selection criteria may be combined (eg one may combine
the begin and select modifiers)

sh> cnt broadcast -begi n=Cm grmake (1)
sh> cnt broadcast -sel ect =Cm gnake (2)
sh> cnt broadcast -select="/Cm /CSet/’ gnake (3)
sh> cnt broadcast -sel ect=Cm -excl ude=Cmo gmake (4)
sh> cnt broadcast -l|ocal gnake (5)
sh> cnt broadcast -depth=<n> gmake (6)

sh> cnt broadcast -all_packages gmake (7)

48

According to the option, the loop will only operate onto:

1.

N

thefirst package which path containsthe string
"Cm", and then all other reachable packages (in case
other specifiersare used)

the packages which path containsthe string " Cm"
the packages which path containseither the string
"/Cm/" or thestring " /CSet/"

the packages which path containsthe string” Cm",
but which does not contain the string " Cmo"

the packages at the same level asthe current package
the packages at the same level asthe current package
or among the<n> first entriesin the CMTPATH list
all the packages and versions currently available
through the CMTPATH list

12.3.2 - cmt build <option>

All build commands ar e generally meant to change the
current package (somefile or set of filesis generated).
Therefore a check against conflicting locks (ie. a lock
owned by another user) is performed by all these
commands prior to executeit.

o [-nmake] constituent_makefile <constituent-name>

Thiscommand isinternally used by CMT in the
standard M akefile.header fragment. It generatesa
specific makefile fragment (named
<constituent-name>.make) which isused to re-build
this fragment.

All such constituent fragments are automatically
included from the main M akefile.

49

Although thiscommand is meant to be used

internally (and transparently) by CMT when the
make command isrun, a developer may find useful in very
rare casesto manually re-generate the constituent fragment,

using this command.

The -nmake option (which must precedethe

command) provides exactly the same featuresbut in a
Windows/nmake context. I n this case, all generated makefiles

are suffixed by .nmakeinstead of .make for Unix
environments. The main makefile is expected to be named

NM ake and the standard header is named
NM akefile.header

[-nmake] constituents makefile

Thiscommand isinternally (and transparently) used

by CMT in the standard M akefile.header fragment,
and when the make command isrun, to generate a specialized

make fragment containing all " cmt build
constituent_makefile' commandsfor a given package.

The -nmake option (which must precedethe

command) provides exactly the samefeature but in a
Windows/nmake context. I n this case, all generated makefiles

are suffixed by .nmakeinstead of .make for Unix
environments. The main makefileis expected to be named

NM ake and the standard header is named
NM ak efile.header

dependencies

Thiscommand isinternally (and transparently) used
by CMT from the constituent specific fragment, and

when the make command isrun, to gener ate a fragment
containing the dependenciesrequired by a sourcefile.

50

Thisfragment contains a set of macr o definitions
(one per constituent sourcefile), each containing the set of

found dependencies.
library links

Thiscommand buildsalocal symbolic link towards
all exported librariesfrom the used packages. A package
exportsitslibrariesthrough the <package> libraries
macr o which should contain thelist of constituent names
corresponding to librariesthat must be exported.

library Foo ...
library Foo-utils ...

nmacro Foo_libraries "Foo Foo-utils"

The corresponding cmt remove library_links
command will remove all theselinks.
make setup

Thiscommand isinternally (and transparently) used
by CMT from the standard M akefile.header
fragment, and when the make command isrun, to
generate another fragment containing all platform
(or tag) specific macro definitions.

One copy of thisfragment (named <tag>.make) is
created per flavour of tag used at build time. Thetag
considered in thisoperation is either the default tag
value (obtained from the CMTCONFI G environment
variable) or specified to the make command using
the -tag=<tag> option)

Thistag specific fragment represents the actual
context that was considered at the most recent make
activation. It isautomatically rebuilt when one of the

51

used requirementsis modified.

msdev

This command gener ates wor kspace (.dsw) and
project (.dsp) filesrequired for the MSDev tooal.

09 makefile

This command gener ates exter nal dedicated makefile
fragmentsfor each individual component of the package (ie.
libraries or executable applications) to be used in OS9 context.

It generates specific syntaxesfor the OS9 operating
systems.

The output of thistool isa set of files (named with
the components name and suffixed by .0s9make)
that are meant to be included within the main

M akefile that the developer hasto write anyhow.

The syntax of the cmt build 0s9 _makefile utility isas
follows :

sh> cnt build o0s9_mekefil e <package>
prototype <sour ce-file-name>

Thiscommand isinternally (and transparently) used
by CMT from the constituent specific fragment, and
when the make command isrun, to generate
prototype header filesfrom C sourcefiles.

The prototype header files (named <file-name>.ph)
will contain prototype definitions for every global
entry point defined in the corresponding C source
file.

52

The effective activation of thisfeatureiscontroled by
the build strategy of CMT. The build strategy may
be freely and globally overridden from any
requirementsfile, using the build_strategy cmt
statement, providing either the" prototypes' or the
"no_prototypes' values.

In addition, any constituent may locally overridethis
strategy using the" -prototypes’ or "-no_prototypes’
modifiers.

e readme

Thiscommand generatesa READM E.html fileinto
the cmt branch of thereferenced package. Thishtml file will

include

o atable containing URL sto equivalent pages for
all used packages,
o acopy of thelocal README file (if it exists).
o tag makefile

This command produces onto the standard output,
the exhaustivelist of all macros controled by CMT,
ie. those defined in therequirementsfilesaswell as
the standard macrosinternally built by CMT, taking
into account all used packages.

12.3.3 - cmt check configuration

Thiscommand readsthe hierarchy of requirementsfiles
referenced by a package, check them, and signals syntax
errors, version conflicts or other configuration
problems.

53

An empty output meansthat everythingisfine.

12.3.4 - cmt check files <r eference-file> <new-file>

Thiscommand comparesthereferencefileto the new
file, and substituesthe referencefile by the new one if
they are different.

|f substitution is performed, a copy (with additional
extension sav) is produced.

12.3.5 - cmt checkout ...

See the paragraph on how to use cvstogether with
CMT, and more specifically the details on checkout

opr ations.

12.3.6 -cmt co ...

Thisissimply a short cut to the cmt checkout command.

12.3.7 - cmt cleanup [-cshl-sh]

Thiscommand generates (to the standard output) a set
of shell commands (either for csh or sh shell families)
meant to unset all environment variables specified in the
requirementsfiles of the used packages.

Thiscommand isinternally used in the cleanup.[c]sh
shell script, itself generated by the cmt config command.

12.3.8 - cmt config

Thiscommand (re-)generates the setup scriptsand the
manimal M akefile (when it does not exist yet or have
been lost).

54

csh> cd ~/ Packages/ Foo/ v1/ cnt
csh> cnt config

To be properly operated, one must already bein the cmt
or mgr branch of a package (wheretherequirements
file can be found).

This command also performs some cleanup operations
(eg. removing all makefile fragments previously
generated). Generally speaking, one may say that this
command restoresthe CM T-related filesto their
original state (ie before any document generation)

The situationsin which it isuseful to run thiscommand
are

e When the setup or cleanup scripts have been lost

e When the minimal M akefile have been lost

e When theversion of CMT ischanged

o After restoring a package from CVS

o After having manually changed the directory
structure of a package (using a manual copy
operation, or renaming one of its parent directory,
such asthe version directory)

12.3.9 - cmt create <package> <version> [<area>]

Thiscommand creates a new package or a new version
of a package

csh> cnt config Foo vl

or.

csh> cnt config Foo vl ~/dev

55

In the first mode (ie. without the area argument) the
package will be created in the default path.

The second mode explicitly provides an alter nate path.

A minimal configuration isinstalled for this new
package:

e An srcand an cmt branch

e A very minimal requirementsfile
e Thesetup and cleanup shell scripts
e The minimal Makefile

12.3.10 - cmt filter <in-file> <out-file>

This command reads <in-file>, substitutes all occurences
of macro references (taking either theform
$(macro-name) or ${ macro-name}) by values deduced
from corresponding macr o specifications found in the
requirementsfiles, and writesthe result into <out-file>.

This mechanism iswidely internally used by CMT,
especially for instanciating make fragments. Then, users
may useit for any kind of document, including maual
generation of M SDev configuration files, etc...

12.3.11 - cmt help

This command showsthelist of options of the cmt
driver.

12.3.12 - cmt lock
cmt lock [<package> <version> [<area>] |

Thiscommand triesto set alock onto the current
package (or onto the specified package). Thisconsistsin

56

the following operations:

1. Check if a conflicting lock isalready set onto this
package (ie. alock owned by another user).

2. 1f not, then install a small text file named lock.cmt
into the cmt/mgr branch of the package, containing
the following text:

| ocked by <user-nane> date <now>

3. Run a shell command described in the macro named
lock_command meant to install physical locks onto
all filesfor thisversion of this package. A typical
definition for this macro could be:

macro | ock_command "chmod -R a-w ../*" \
W N32 "attrib /S/D+R ../*"

12.3.13 - cmt remove <package> <version> [<ar ea>]

This command removes one version of the specified
package. | f the package does not contain a conflicting
lock, and if the user isgranted enough accessrightsto
removefiles, all filesbelow the version directory will be
definitively removed. Therefor e thiscommand should
be used with as much care aspossible,

The arguments needed to reach the package version to
beremoved arethe same asthe oneswhic had been used
to createit.

|f theremoved version isthelast version of this
package, (and only if itsdirectory isreally empty) the
package directory itself will be deleted.

57

12.3.14 - cmt removellibrary _links

This command removes symbolic links towards all
imported librarieswhich had been installed using the
cmt build library links command. Thiscommand is
generally transpar ently executed when onerunsgmake
clean

12.3.15 - cmt run shell-command

This command runs any shell command, in the context
of the current package.

Thismay not appear to be very useful for the current
package one isworking on, but when combined with
global options -pack=package, -version=version,
-path=access-path, this gives a direct accessto any
package context.

12.3.16 - cmt setup [-csh|-sh|-bat]

This command gener ates (to the standard output) a set
of shell commands (either for csh, sh or bat shell
families) meant to set all environment variables
specified in the requirementsfiles of the used packages.

Thiscommand isinternally used in the setup.[c]sh or
setup.bat shell script, itself generated by the cmt config
command.

12.3.17 - cmt show <option>

e author
e branches
o clients<package> [<version>]

58

This command displays all packages that express an

explicit use statement onto the specified package. If
no version is specified on the argument list, then all uses of

that package ar e displayed.

constituent_names
constituents

uses

fragment <name>

Thiscommand displays the actual location wherethe
specified make fragment is currently found by CMT,
taking into account possible overridden definitions.

fragments
groups

Thiscommand displays all groups possibly defined in
constituents of the current package (using the
-gr oup=<group-name> option).

languages
macr o <name>

Thiscommand displays a quite detailed explanation

on the value assigned to the macr o specified asthe additional
argument. It presentsin particular each inter mediate
assignments made to this macro by the hierarchy of used
statements, aswell asthefinal result of these assignment

oper ations.

By adding a -tag=<tag> option to thiscommand, it is
possible to simulate the behaviour of thiscommand in another
context, without actually going to a machine or an operating

system wherethis configuration is defined.

59

e macro _value <name>

Thiscommand displaystheraw value assigned to the
macr o specified asthe additional argument. It only presents
thefinal result of the assignment oper ations performed by

used packages.

By adding a -tag=<tag> option to thiscommand, it is
possible to simulate the behaviour of thiscommand in another
context, without actually going to a machine or an operating

system wherethis configuration is defined.

Thetypical usage of the show macro_value command
isto get at the shell level (rather than within a

M akefile) the value of a macro definition, providing
means of accessing them (quite similarly to an environment

variable) :

csh> set conpil er='cnt show macro_val ue cppconp'
csh> ${conpiler}

e Macr oS

This command extracts from therequirementsfile(s)
the complete set of macro definitions, selectsthe
appropriate tag definition (or usesthe one provided
in the -tag=<tag> option) and displaysthe effective
macr o values cor responding to thistag.

Thiscommand istypically used to show the effective
list of macros used when running make and can be
also used to build, asan argument list, the make
command asfollows:

csh> eval make ‘cnt show nmacros'

60

Thisuse of cmt show macrosisdirectly installed
within the default target provided in the standard

M akefile.neader file. Thereforeif thisfileisincluded
into the package’'s M akefile, macr o definitions
provided in therequirementsfiles (the one of the
currently built package as well asthe ones of the
used packages) will be expanded and provided as
argumentsto make.

By adding a -tag=<tag> option to thiscommand, it is
possible to ssmulate the behaviour of thiscommand
in another context, without atcually going to a
machine or an oper ating system wherethis
configuration is defined.

e Manager
e packages

Thiscommand displays all packages (and all versions
of them) currently reachable through the current
access path definition (which can be displayed using
the cmt show path command).

e path

This command displaysthe complete and effective
access path currently defined using any possible
alternate way.

e pattern <name>

This command displays how and wher e the specified
pattern is defined, and which packages do apply it.
e patterns

61

Thiscommand displays all pattern definitions.
e pwd

Thiscommand displays afiltered version of the

standard pwd unix command. The applied filter
takesinto account the set of aliasesinstalled in the standard

configuration filelocated in
$H{CMTROOT}/ mgr/cmt_mount_filter.

This configuration file contains a set of path aliases
(one per line) each proposing atrandglation for non-portable
file paths (imposed by mount constraints on some contexts).

e Set_value <name>
e S&t <name>

e SElS

e Strategies

e tags

e USES

This command displays a quite comprehensive and
detailed explanation of the hierar chy of use statements, with
the effective selection made between possibly compatible

Ver sions.

use CMI vi1r10 /I al
use Cmv7r5

use CSet v2r5
#

Sel ection :

use CSet v2r5 /Il al
use Cmv7r5 /1| al

use CMI vir10 /I al

The -quiet option may be used to remove from the
output, the comments (beginning with the #
character), so asto display asimplelist of used
packages, starting from the deepest uses.

62

e VErsion

Thiscommand displaysthe version tag of the current
package.

e VErsions <name>

Thiscommand displaysthe reachable versions of the
specified package, looking at the current access paths.

12.3.18 - cmt system

Thiscommand displays the current value assigned by
default to the CMTCONFIG environment variable.

12.3.19 - cmt unlock
cmt unlock [<package> <version> [<area>]]

Thiscommand triesto remove a lock from the current
package (or from the specified package). This consistsin
the following operations:

1. Check if a conflicting lock isalready set onto this
package (ie. alock owned by another user).

2. 1f not, then removethetext file named lock.cmt from
the cmt/mgr branch of the package.

3. Run a shell command described in the macro named
unlock_command meant to remove physical locks
from all filesfor thisversion of thispackage. A
typical definition for thismacro could be:

macro unl ock_command "chrmod -R g+w .. /*" \
W N32 "attrib /S/D-R ../*"

63

12.3.20 - cmt version

This command showsthe current verion of CMT,
including (if applicable) the actual patch level. This
always correspondsto the corresponding CVStag
assigned to CM T sour ces.

12.3.21 - cmt cvstags <module>

(seethe section on how tu use CV Stogether with CMT for
mor e details on this command)

12.3.22 - cmt cvsbranches <module>

12.3.23 - cmt cvssubpackages <module>

12.4 - The setup and cleanup scripts

They are produced by the cmt config command and their
contentsis built according to the specifications stored in
therequirementsfile.

Oneflavour of these scriptsis generated per shell family
(csh, sh and bat), yielding the following scripts:

set up. csh
set up. sh
set up. bat

cl eanup. csh
cl eanup. sh

The main sectionsinstalled within a setup script are:

1. Connection to the current version of the CMT package.

2. Setting the set of user defined public variables specified
in the requirementsfile (including those defined by all
used packages). Thisisachieved by running the cmt

64

setup utility into a temporary fileand running this
temporary file.

3. Activation of the user defined setup and cleanup scripts
(those specified using the setup_script and
cleanup_script statements).

It should be noted that these setup scripts do not contain

machine specific information (dueto the online use of the

cmt setup command). Therefore, it is perfectly possibleto
use the same setup script on various platforms (as soon as
they sharethedirectories) and thisalso showsthat the
configuration operation (the cmt config command) is

required only oncefor a set of multiple platformssharing a

development area.

12.5 - cmt build prototype

Thiscommand isonly provided for development of C
modules. It generates a C header file containing the set of
prototype statementsfor all public functions of a given
module. Its output isa file with the same name as the input
sour ce (given asthe argument) and suffixed with .ph.

The generated prototype header fileis meant to be
included whereever it isneeded (in the modulefileitself for
instance).

A typical example of the use of cmt build prototype could
be:

csh> cd ../src
csh> cnt build prototype FooA c
Bui | di ng FooA. ph

Running cmt build prototype will only produce a new
prototype header fileif the output isactually different from

65

the existing one (if it exists) in order to avoid confusing
make checks.

The effective use of thisfacility (which may not be
appropriatein all projects) iscontrolled by one option of the
build strategy, which can take one of the two values:

bui | d_strategy prototypes
bui | d_strategy no_prototypes

In addition to this global strategy specification, each
application or library may individually overrideit using
the -prototypes or -no_prototypes options.

L astly, the actual behaviour of the prototype generator is
defined in the standard make macro build_prototype
(which default to call the cmt build prototype command,
allowing a user defined behaviousto thisfeature)

13 - Using cvstogether with CMT

Nothing special isapriori required by CMT with respect to
theuse of CVS. Nevertheless, one may advertize some well
tested conventions and practices which turned out to ensurea
good level of consistency between the two utilities.

Although none of these arerequired, the cmt gener al
command provides a few utilities so asto simplify the use of
these practices. It should be noted that the added features
provided by cmt rely on the possibility to query CV S about the
existing CM T packages and the possible tags setup for these
packages. CVS does not by default permit such query

oper ations (since they requireto scan the physical CVS
repository). Therefore CMT providesa hook to CVS (based
upon standard CVSfeatures - not patches) for this. This hook

66

can beinstalled by the following procedur e (see sections below
for more details):

sh> (cd ${CMIROOT}/ ngr; gneke installcvs)

13.1 - Importing a packageinto a cvsrepository

Generally, everything composing a package (below the
version directory and besidesthe binary directories) is
relevant to beimported. Then choosing a cvs module name
IS generally done on the basis of the package name. Taking
the previous examples, one could import the Foo package
asfollows:

csh>cd / Foo/ v1
csh> cvs import -m"First inport” -1 al pha -1 hp9000s700 Foo LAL vl

In thisexample,

o Wwe haveignored the currently existing binary
directories (here alpha and hp9000s700)
e thecvsmodule nameisidentical to the package name
(Foo)
e theoriginal symbolicinsertion tagisidentical tothe
version identifier (v1)
The choice of the module name can generally be identical
to the package name. However, some site specific
management issues may lead to different choices (typically,
atop directory where groups of packages are gathered may
beinserted).

Conversely, using symbolic tagsidentical to version
identifiers appearsto be a very good practice. The only
constraint induced by cvsisthat the symbolic tags may not

67

contain dot characters(’.’), whereas no restriction exist
from CMT itself. Thusversion identifierslike v3r2 will be
preferred tothev3.2 form.

13.2 - Checking a package out from a cvsrepository

Assuming the previous conventions on module name and
version identifier have been selected when importing a
package, the following oper ations will naturally intervene
when one need to check a package out (typically to work on
it or toinstall it on some platform) :

csh> cd <sone root > (1)
csh> nkdir Foo (2)
csh> cd Foo

csh> cvs checkout -d vl Foo (3)
csh> cd vl/cnt

csh> cnt config (4)
csh> source setup. csh (5)
csh> [g] make (6)

1. onealways haveto select aroot directory whereto settle
down this copy of the extracted package. This may
either be the so-called default root or any other
appropriate directory. In both cases, the next cmt config
oper ation will automatically take care of this effective
location.

2. creating a base directory with the package nameis
mandatory here, and is not taken into account by cvs
during the chaeckout operation since one wantsto insert
the version branch in between.

3. the packageischecked out into a directory named with
the expected version identifier exactly corresponding to
theversion currently stored in the cvsrepository.

4. then using the cmt config command (from the cmt
branch) will update the setup scripts against the

requirementsfile and the effective current package

68

location.
5. using thisupdated version of the setup script provides
the appropriate set of environment variables
6. lastly, rebuilding the entire package is possible smply
using the [glmake command.
The actions decribed just above (from number 2 to number
4 included) can also be performed using the cmt checkout
command.

> cd <sone work area>

> cnmt checkout [nodifier ...] <package> ...
nodi fier :
-1 Do not process used packages (default).
-R Process used packages recursively.
-r rev Check out version tag. (is sticky)
-d dir Check out into dir instead of nodul e nane.
-0 offset Offset in the CVS repository
-n Si mul ati on node on
-V Ver bose node on
-hel p Print this help

Thusthe previous example would become;

csh> cd <sone root>
csh> cnt checkout Foo
csh> cd Foo/vl/cnt
csh> source setup.csh
csh> [g] make

13.3 - Querying CVS about some important infos

It ispossible, using the commands:

e CMt cvstags <module>

e CcMt cvsbranches <module>

e CcMt cvssubpackages <module>
to query the CVSrepository about the existing tags
installed onto a given CVS module, the subdirectoriesand
the subpackages (in the CMT meaning, i.e. when a
requirementsfile exists).

69

> cnt cvstags COm

v7r6 v7r5 v7ird vir3 v7rl v7
> cnt cvstags Co

v3r7 v3r6 v3

One should notice herethat the cvstags command can give
infor mations about any type of module, even if it is not
managed in the CMT environment.

However, in order to let this mechanism operate, it is
required to install some elementsinto the physical CVS
repository (which may require some accessrightsinto it).
Thisinstallation procedure (to be done only oncein thelife
of therepositiory) can be achieved through the following
command:

sh> (cd ${CMIROOT}/ ngr; grake installcvs)

However, the details of the procedureislisted below (this
section ispreferably reserved for system managersand can
easily be skipped by standard users):

1. copy thecmt_buildcvsinfos2.sh shell script into the
management directory ${CVSROOT}/CVSROOT as
follows:

sh> cp ${CMIROOT}/ ngr/ cnt _bui | devsi nf 0s2. sh ${ CVSROOT} / CVSROOT

2. install one special statement in the loginfo
administrativefile asfollows :

sh> cd ...

sh> cvs checkout CVSROOT
sh> cd CVSROOT

sh> vi | oginfo

.cnt cvsi nfos $CVSROOT/ CVSROOT/ cnt _bui | dcvsi nf 0s2. sh
sh> cvs commit -m"set up commitinfo for CMI™

70

13.4 - Working on a package, creating a new release

This section presentsthe way to instanciate a new release of
a given package, which happens when the foreseen
modifications will yield additions or changesto the
application programming interface of the package.

Then the version tag is supposed to be moved forward,
either increasing itsminor identifier (in case of simple
additions) or itsmajor identifier (in case of changes).

The following actions should be undertaken then :

1. understand what isthe latest version tag (typically by
using the cmt cvstags command). Let’scall it old-tag.

2. select (according to the foreseen amount of changes)
what will bethe next version tag. Let’scall it new-tag.

3. check the most recent version of the package in your
development area :

sh> cd <devel opnent area>
sh> cvs checkout -d <newtag> <package>

4. configurethisnew release, and rebuild it :

sh> cd <newtag>/cnt
sh> cnt config

sh> source setup.csh
sh> [g] make

13.5 - Getting a particular tagged version out of cvs

The previous example presented the standard case where
one gets the most recent version of a given package. The
procedureisonly dlightly modified when one wantsto

71

extract a previously tagged version. Let’simagine that the
Foo package has evolved by several iterations, leading to
several tagged releasesin the cvsrepository (say v2 and

v3). If thev2 releaseisto be used (e.g. for under standing
and fixing a problem discovered in the running version) one
will operate asfollows:

csh> cd <sone root>

csh> nkdir Foo

csh> cd Foo

csh> cvs checkout -d v2 -r v2 Foo
csh> cd v2/cmt

csh> cnt config

csh> source setup.csh

csh> nmake

14 - Interfacing an external packagewith CMT

Very often, external packages (typically commercial products,
or third party software) areto be used by packages
developped in the context of the CMT environment. Although
this can obviously done simply by specifying compiler or
linker optionsinternally to the client packages, it can be quite
power ful to interface these so-called external packagesto
CMT by defining a glue package, wher e configuration
gpecificationsfor thisexternal package are detailed.

Using this approach, one may :

e provide a nickname for this external package,

o adapt the version tag convention consistently to the project,
hiding the version tag specificities of eg. commercial
packages.

e provide compiler optionsusing thethe standard make
macr os <package> cflags, <package> cppflags or
<package>_ fflags,

o Specify a set of search pathsfor theincludefiles, using the

72

include_dirs statement,
e providelinker optionsusing the the standard make macros
<package>_linkopts

Let’sconsider the example of the OPACS package. This
packageis provided outside of the CM T environment.
Providing a directory treefollowing the CMT conventions (ie.
a branch named after the version identifier, then an cmt
branch) then arequirementsfile, containing (among other
statements not shown for the sake of clarity) :

package OPACS

include_dirs ${W_root}/include ${Co_root}/include ${Xx_root}/include \
${Ho_root}/include ${CGo_root}/include ${Xo_root}/incl ude

public

macro OPACS cfl ags "-DHAS XO - DHAS XM

macr o OPACS_cppfl ags " $(OPACS cfl ags) "

macro OPACS_| i nkopts "$(Wo_l i nkopts) $(Xo_linkopts) $(Go_linkopts) \

$(d o_linkopts) $(Xx_linkopts) $(Ho_linkopts) $(H m o_linkopts) \
$(VBo_l i nkopts) $(Co_linkopts) $(X_ I|inkopts)"

Then every package or application, client of this OPACS
package would havejust to provide a use statement like:

use OPACS v3

This procedure gives the complete benefit of the use
relationships between packages (a client application
transparently inherits all configuration specifications) while
keeping unchanged the original referenced package, allowing
to apply this approach even to commercial products so that
they may beintegrated in resour ce usage surveyssimilarly to
local packages.

73

15 - Installing CMT for thefirst time

These sectionsare of interest only if CMT isnot yet installed
on your site, of if you need a private installation.

Thefirst question you need to answer isthelocation whereto
install CMT. Thislocation istypically a disk area where most
of packages managed in your project will be located.

Then, you haveto fetch the distribution kit from the Web at
http://www.lal.in2p3.fr/SI/CMT/CMT.htm. You must get at
least the primary distribution kit containing the basic
configuration information and the CM T sources. This
operation resultsin a set of directories hanging below the
CMT root and theversion directory. The src branch contains
the sources of CM T, the fragments branch containsthe
makefile fragments and the mgr branch containsthe scripts
needed to build or operate CMT.

15.1 - Installing CMT on your Unix site

Thevery first operation after dowloading CMT consistsin
running the INSTALL shell script. Thiswill build the setup
scriptsrequired by any CMT user.

Then you may either decideto build CMT by yourself or
fetch a pre-built binary from the same Web location. The
prebuilt binary versions may not exist for the actual
platform you areworking on. You will see on the
distribution page the precise configurations used for
building those binaries.

In case you haveto build CMT yourself, you need a C++
compiler capable of handling templates (although the
support for STL isnot required). Thereisa Makefile

74

http://www.lal.in2p3.fr/SI/CMT/CMT.htm

provided in the distribution kit which takes g++ by default
asthe compiler. If you need a specific C++ compiler you will
override the cpp macro asfollows:

sh> gnake cpp=CC

The cppflags macro can also be used to override the
behaviour of the compilation.

Another important concernistheway CMT will identify
the platform. CMT builds a configuration tag per each type
of platform, and usesthistag for naming the directory
where all binary fileswill be stored. Assuch thistag hasto
be defined prior to even build CMT itself.

CMT buildsthe default configuration by running the
cmt_system.sh script found in the mgr branch of CMT.
Run it manually to see what isthe default value provided
by thisscript. You might consider changing itsalgorithm
for your own convenience.

A distribution kit may be obtained at the following URL

http://wwmv. | al.in2p3.fr/SI/CMI/ CMI. ht m

Oncethetar file has been downloaded, the following
oper ations must be achieved :

1. Select aroot directory wheretoinstall CMT. Typically
thiswill correspond to a development area or a public
distribution area.

Import the distribution kit mentioned above.
Uncompress and untar it.

Configure CMT.

CMT isready to be used for developing packages.

ok owhN

75

A typical corresponding session could look like:

csh> cd / Packages

csh> <get the tar file fromthe Wb>
csh> unconpress CMIvlril0.tar.Z

csh> tar xvf CMIvlr10.tar

csh> cd CMI/ v1r 10/ ngr

csh> . /1 NSTALL

csh> source setup.csh

csh> gnake

15.2 - Installing CM T on aWindows or Windows NT site

You first haveto fetch thedistribution kit from the Web at
http://www.lal.in2p3.fr/SI/CMT/CMT.htm. Y ou must get
at least the primary distribution kit containing the basic
configuration information and the CMT sources. This
operation resultsin a set of directories hanging below the
CMT root and the version directory. The binary kit
provided for Windows environmentswill generally fit your
needs.

You should consider getting the pre-compiled (for a
Windows environment) applications, and especially the
.\VisualC\install.exe application, which interactively
configurestheregistry entries as described in the next

paragraph.
The next operation consistsin defining a few registries

(typically using the standard RegEdit facility or the
install.exe special application):

e« HKEY LOCAL_MACHINE/Software/CM T/root will
contain theroot directory where CMT isinstalled (eg.
"e).

e« HKEY_ LOCAL_MACHINE/Software/CMT/version
will contain the current version tagof CMT (" v1r 10"

76

http://www.lal.in2p3.fr/SI/CMT/CMT.htm

for thisversion).

e« HKEY LOCAL_MACHINE/Software/CMT/path/ may
optionally contain a set of text values correspondingto the
different package global access paths.

e« HKEY LOCAL_MACHINE/Software/CMT/site will
contain the conventional site name.

e HKEY CURRENT_USER/Software/CM T/path/ may
contain a set of text of text values corresponding to the
different package private access paths.

CMT can also be configured to run on DOS-based
environments using the nmake facility. I n this case, the
installation procedureisvery similar to the Unix one:

A typical corresponding session could look like:

dos> cd Packages

dos> <get the tar file fromthe Web>
dos> cd CMMN v1r 10\ ngr

dos> | NSTALL

dos> setup. bat

dos> nmake /f nmake

16 - Differences with previousversionsof CMT

16.1 - Converting a package that was managed with previous
versions of CMT (or methods)

The primary sour ce of information handled by CMT, i.e.
the syntax - and semantics - of therequirementsfileis
supposed to be maintained as backward compatible with
previous versions. Therefore we expect that the effects of
using a new version of CMT to a package already managed
by previousversionsof CMT, will remain limited.

i

Generally, it isenough to just re-configure the package,
using the well known command

sh> cnmt config

Thiswill result in re-generating the setup scripts, and
verifying Makefile. A proper CMT M akefile contains at
least the two following lines:

i ncl ude ${CMIROOT}/ src/ Makefi |l e. header

i ncl ude ${CMIROOT}/ src/ constituents. nake

Thesetwo linesaretheonly required linesto be present in
an operational M akefile. However, the user isentirely free
to install additional make statements at any location for
his’/lher own purpose.

No further operation isthen needed. All other makefile
fragmentswill be automatically generated at maketime. It
IS even recommended to remove any existing makefile
fragment generated by previousversionsof CMT. Thiscan
be easily done by using the dedicated configclean target as
follows

sh> gnake configcl ean

it might also be useful (if not recommended !) to clean the
binary directoriesand rebuild it asfollows:

sh> gnake config
sh> gnake

Lastly, it’s often useful to broadcast these actions (and
primarily the cmt config action) towards all used packages
at once. Thisof course can easily be done through the cmt

78

broadcast command as follows:

sh> cnt broadcast cnt config
sh> cnt broadcast cnt gnake configcl ean

16.2 - Operationsin a Windows environment

A graphical and interactive application (cmtw) is now
provided on Windows (95/98/NT) environments. This
application let the developer browse the package
directories, select any version of any package. Its
configuration is shown, and interactive edition is possible
on itsrequirementsfile. A few operationsare also possible,
such asthe generation of M SDev configuration files, so as
to directly work with packages managed by CMT within
the M SDev development environment. Currently this
support isstill evolving and user might see limitationsin
thedialog between CM T and M SDev (only the constituent
definitions - applicationsand libraries - and the use
mechanism - package relationships - are understood in the
context of MSDev). Users of these new facilitiesare kindly
invited to send their comments, bug observations,
suggestions or even contributionsto the author.

17 - Appendices

17.1 - Standard maketargets predefined in CMT

These targets can always be listed through the following
command :

sh> gnake hel p

79

target usage

help Get thelist of possible maketarget for thispackage.
all build all components of this package.

clean remove everything that can berebuilt by make
configclean remove all intermediate makefile fragments

check run all applications defined with the -check option

only build this particular component (as opposed to the all target that tries

component-name to build all components of this package)

build all constituents belonging to this group (ie. those defined using the

group-name same -group= option)

Thesetargets have to be specified asfollows::

sh> gnake cl ean
sh> gnmake Foo

17.2 - Standard macros predefined in CMT
17.2.1 - Structural macros

These macros describethe structural conventions
followed by CMT. They receive a conventional default
value from the CMT requirementsfile. However, they
can beoverridden in any package for its own needs.

macro usage default value
tag givesthebinary tag HCMTCONFIG}
src the src branch Isrcl

inc theinclude branch Isrcl

magr thecmt or mgr branch | ../cmt/ or ../mgr/

bin thebranch for binaries |./${CMTCONFIG}/

the branch for java

.Jclasses/
classes

javabin

doc the doc branch .Jdoc/

80

17.2.2 - Languagerelated macros

These macros are purely conventional. They are
expected in the various make fragments available from
CMT itsdf for providing the various building actions.

During the mechanism of new language declar ation and
definition availablein the CMT syntax, developersare
expected to define similar conventions for
corresponding actions.

Their default valuesareoriginally defined inside the
requirementsfile of the CMT package itself but can be
redefined by providing a new definition in the package’s
requirementsfile using the macro statement. The
original definition can be completed using the
macro_append or macro_prepend statements.

cc The C compiler cc

The C compiling . :
ccomp command $(cc) -c -1$(inc) $(includes) $(cflags)
clink TheC linkingcommand | $(cc) $(clinkflags)
cflags The C compilation flags none
op_cflags '(I;he preprocessor flagsfor none
clinkflags| The C link flags none
cpp The C++ compiler g++

The C++ compiling , .

cppomp $(cpp) -c -1$(inc) $(includes) $(cppflags)

command

cpplink The C++ linking command | $(cpp) $(cpplinkflags)

cppflags The C++ compilation flags none
pp_cppflags The preprocessor flags for none

C++

cpplinkflags | The C++ link flags none

81

for The Fortran compiler f77

fcomp The Fortran compiling command | $(for) -c -1$(inc) $(includes) $(fflags)

flink The Fortran linking command $(for) $(clinkflags)

fflags The Fortran compilation flags none

pp_fflags | The preprocessor flagsfor fortran | none

flinkflags | The Fortran link flags none

omd Theinclude file command for |
PP Fortran

The java compiling

javacomp javac

command

: Thejava archiver .

jar jar
command

lex TheLexcommand | lex $(lexflags)

lexflags | TheLex flags none

yacc TheYacc command | yacc $(yaccflags)

yaccflags | The Yacc flags none
The archive

ar ar -clr
command

ranlip | | neraniib ranlib
command

17.2.3 - Package customizing macr os

These macrosdo not receive default values. They are all
prefixed by the package name. They are meant to
provide specific variant to the corresponding generic
language r elated macr os.

They are automatically and by default concatenated by
CMT tofill in the corresponding global use macros (see
appendix on generated macros). However, this
concatenation mechanism is discarded when the
-no_auto_importsoption is specified in the

82

corresponding use statement.

<package> cflags

specific C flags

<package> pp_cflags

specific C preprocessor flags

<package>_cppflags

specific C++ flags

<package> pp_cppflags

specific C++ preprocessor flags

<package>_fflags

specific Fortran flags

<package> pp_fflags

specific Fortran preprocessor flags

<package>_libraries

gives the (space separ ated) list of library names exported by this
package. Thislist istypically used in the cmt build library_links
command.

<package>_linkopts

providethelinker optionsrequired by any application willing to
accessthe different libraries offered by the package. This may
include support for several librariesper package.

A typical example of how to define such a macro could be:

macro Cm | inkopts "-L$(CMROOT)/$(Cmtag) -1Cm-Int

<package>_stamps

may contain alist of stamp file names (or make tar gets).
Whenever alibrary ismodified, one dedicated stamp fileis
re-created, smply to mark the reconstruction date. The name of
this stamp fileis conventionally <library>.stamp. Thus, a typical
definition for this macro could be:

macro Cm stanps "$(Cmroot)/ $(Cmtag)/Cm stanp”

Then, these stamp filereferences are accumulated into the
standard macro named use_stampswhich isalwaysinstalled
within the dependency list for applications, so that whenever one
of thelibraries used from the hierar chy of used packages
changes, the application will be automatically rebuilt.

17.2.4 - Constituent specific customizing macr os

These macrosdo not receive any default values (iethey
are empty by default). They are meant to provide for

each constituent,

specific variantsto the corresponding

generic language related macros.

By convention, they are all prefixed by the constituent

83

name. But macros used for defining compiler options
arein addition prefixed by the constituent category (either

lib_, app_ or doc_

They are used in the various make fragmentsfor fine
customization of the build command parameters.

<category>_<constituent>_cflags

specific C flags

<category>_<constituent>_pp_cflags

specific C preprocessor flags

<category>_<constituent>_cppflags

specific C++ flags

<category>_<constituent>_pp_cppflags

specific C++ preprocessor flags

<category>_<constituent>_fflags

specific Fortran flags

<category>_ <constituent> pp_fflags

specific Fortran preprocessor flags

<constituent>linkopts

provides additional linker optionsto the
application. It iscomplementary to - and should
not be confused with - the <package>_linkopts
macr o, which provides exported linker options
required by clients packagesto usethe package
libraries.

<congtituent>_shlibflags

provides additional linker options used when
building a shared library. Generally, a ssimple
shared library does not need any external
referenceto beresolved at build time (it isin this
case supposed to get itsunresolved references
from other shared libraries). However, (typically
when one builds a dynamic loading capable
component) it might be desired to statically link it
with other libraries (making them somewhat
private).

<congtituent>_dependencies

provides user defined dependency specifications
for each congtituent. Thetypical use of this macro
isfill it with the name of thelist of some other
constituents which have to be rebuilt first (since
each constituent is associated with atarget with
the same name). Thisis especially needed when
onewant to usethe parallel gmake (ie. the -j
option of gmake).

84

17.2.5 - Sour ce specific customizing macr os

These macrosdo not receive any default values (iethey
are empty by default). They are meant to provide for
each sour cefile, specific variantsto the corresponding
generic language r elated macr os.

By convention, they are all prefixed by the sourcefile
name followed by the sour cefile suffix (either _c, cxx,
_f, etc))

They areused in the various make fragmentsfor fine
customization of the build command parameters.

<constituent>_<suffix>_cflags | specific C flags

<congtituent>_<suffix>_cppflags | specific C++ flags

specific Fortran

<constituent>_<suffix>_fflags
flags

17.2.6 - Generated macros

These macros are automatically generated when makeis
run.

Thefirst set of them provide constant values
correspondingto CMT based information. They are not
meant to be overridden by the user, sincethey serveasa
communication mean between CMT and the user.

85

<PACKAGE>ROOT The access path of the package (including the version branch)

The access path of the package (including the version branch).
Thismacroisvery similar to the <PACKAGE>ROOT macro
except that it triesto use a relative path instead of an absolute
one.

<package>_root

<PACKAGE>VERSION | The used version of the package

PACKAGE_ROOT The access path of the current package (including the version

branch)
package The name of the current package
version Theversion tag of the current package

The second set isdeduced from the context and from the
requirementsfile of the package. They can be
overridden by the user so asto customizethe CMT
behaviour.

The gpecific configuration tag for the package. By default it

<package>_tag is set to $(tag) but can be freely overridden

The ordered set of constituents declared without any group

constituents)
option

Theordered set of all constituentsdeclared using a

<group-name>_constituents _ -
group=<group-name> option

Thethird set of generated macros arethe global use
macros. They correspond to the concatenation of the

cor responding package specific customizing optionsthat
can be deduced from the ordered set of use statements
found in therequirementsfile (taking into account the
complete hierarchy of used packages with the exception
of those specified with the

-no_auto_importsoption in their use statement) :

86

use_cflags C compiler flags
use pp_cflags Preprocessor flagsfor the C language
use_cppflags C++ compiler flags

use pp_cppflags

Preprocessor flagsfor the C++ language

use fflags Fortran compiler flags

use pp_fflags Preprocessor flagsfor the Fortran language
use libraries List of library names

use linkopts Linker options

use_stamps Dependency stamps

use_requirements

The set of used requirements

use includes

The set of include sear ch paths optionsfor the preprocessor from the
used packages

use fincludes

The set of include sear ch paths optionsfor the fortran preprocessor
from the used packages

includes Theoverall set of include search pathsfor the preprocessor
. Theoverall set of include search pathsoptionsfor thefortran
fincludes

pr epr ocessor

17.2.7 - Utility macros

These macros are used to specify the behaviour of
various actionsin CMT.

87

X11_cflags

compilation flagsfor X11

Xm_cflags compilation flagsfor Motif

X_linkopts Link optionsfor XWindows (and M otif)

make shlib The command used to generatethe shared library from the static
one

shlibsuffix The system dependent suffix for shared libraries

shlibbuilder Theloader used to build the shared library

shlibflags The additional options given to the shared library builder

symlink The command used to install a symbolic link

The command used to remove a symbolic link

build_prototype

The command used to generatethe C prototype header file (default
totheinternal cmt dedicated command)

build_dependencies

The command used to gener ate dependencies (default to the inter nal
cmt dedicated command)

lock_command

The command used to physically lock a package

unlock_command

The command used to physically unlock a package

make_hosts

Thelist of remote host names which exactly require the make
command

gmake_hosts

Thelist of remote host names which exactly require the gmake
command

17.3 - Standard templates for makefile fragments

template name usage used in fragment
additional
ADDINCLUDE |include <language> java
path
<language> javajar make header jar_header java header
library header application_header protos _header
library _no_sharelibrary application dependencies
name of the cleanup_header cleanup_library cleanup_application
CONSTITUENT . check _application document_header <document> trailer
constituent ; .
dsw_all_project_dependency dsw_project
dsp_library header dsp_shared_library header
dsp_windows header dsp_application_header dsp_trailer
constituent check_application_header
DATE now make_header

88

file name

FILENAME without buildproto <language> <document>
path
FILEPATH file path buildproto <language> <document>
file suffix
FILESUFFIX (without <language>
dot)
FILESUFFIX | MesuffiX o iments
(with dot)
complete
FULLNAME file path <language> cleanup <document> dsp_contents
and name
GROUP group constituents_header
name
LINE sourcefiles | <language> dependencies constituent
LINKMACRO |link macro |application
filename
without : .
NAME path and buildproto <language> java <document>
suffix
OBJS object files Jar_hea(_jer java_hea(_jer jar I|brary_no_sharell_brary
application cleanup_java document_header trailer
OUTPUTNAME | utPutfile s a
name
<language> dsw_header dsw_all_project
current dsw_all _project_trailer dsw_trailer dsp_all
PACKAGE Ega(:ge mak_e_setup_heaTder make_s?etup readmg_header readme
readme _usereadme trailer
current
PACKAGEPATH | package readme_use
location
PROTOSTAMPS | PrOtotyPe 1 6 header
stamp files -
prototype
PROTOTARGET | target library header application_header
name
SUFFIX document | _jocument>

suffix

89

TITLE

title for
make
header

make_header

USER

user name

make _header

VERSION

current
package
version tag

readme_header readmereadme_use

17.4 - Makefile generation sequences

This section describes the various makefile gener ation
sequences provided by CMT. Each sequence description
shows the precise set of make fragments used during the

oper ation.

Generated makefile

description

used make fragments

<constituent>.make

application or library
specific make
fragment

ok~ w

10.
11.
12.
13.
14.

©oNO®

Configuration files 1. make setup_header
setup.make for make 2. make_setup
the main entry point 1. constituents_header
constituentsmake | point for all 2. constituent
constituent targets 3. check_application_header
1. make header
2. java_header |jar_header | library_header |

application_header

protos header

buildproto

jar |library | library_no_share|
application

dependencies

<language> | <language>_library | java
cleanup_header

cleanup

cleanup_application
cleanup_objects

cleanup_java

cleanup_library
check_application

90

make _header
document_header
dependencies
<document>
<document-trailer>
cleanup_header

document specific

<constituent>.make
make fragment

dsw_header
dsw_all_project_header
dsw_all_project_dependency
dsw_all_project_trailer
dsw_project

dsw_trailer

dsp_all

Visual workspace

<package>.dsw | . otiouration files

P NOURAWNR| OOAWNPR

dsp_library_header |
dsp_shared_library_header |
Visual project dsp_windows_header |
configuration files dsp_application_header
dsp_contents

dsp_trailer

<constituent>.dsp

readme_header
readme
readme_use
readme _trailer

README

AODNMNPE®ODN

17.5 - The complete requirements syntax

The syntax of specification statementsthat can beinstalled
in arequirementsfileare:

cmt-statement : alias

| application
| apply pattern

| author

| branches

| build strategy
| cleanup_script

| document

| ignore pattern

91

| include dirs

| include path

| language

| library

| macro

| macro_append

| macro_prepend
| macro remove

| macro_remove all

| make fragment
| manager

| package

| path

| path_append

| path_prepend

| path_remove

| pattern

| private

| public

&

| set append
| set_prepend

| set_remove

| setup_script

5 B

<
g |
.
(@]
-]

| wversion_strategy

alias : aliasalias-namevalue|[tag value ...]

application : application application-name [constituent-option ...] source...

92

constituent-option

source
apply_pattern
author
branches
build_strategy

build-strategy-name

cleanup_script
document
ignore_pattern
include_dirs
include_path
language

language-option

-0S9

-windows

-no_share

-no_static

-prototypes
-no_prototypes

-check
-group=group-name
-suffix=output-suffix
-import=package-name
variable-name=variable-value

[-s=new-search-path] file-name

apply_pattern pattern-name [template-name=value ...]

author author-name

branches branch-name ...
build_strategy build-strategy-name
prototypes

no_prototypes

keep_makefiles

rebuild_makefiles

cleanup_script script-name

document document-name [constituent-option
ignore_pattern pattern-name

include_dirs search-path ...

include_path search-path

language language-name [language-option ...]

-suffix=suffix
-linker =linker-command

-prototypes

...] source...

-preprocessor _command=preprocessor-command

93

| -fragment=fragment
| -output_suffix=output_suffix

| -extra_output_suffix=extra_output_suffix

library :library library-name [constituent-option] source...
macro ! macro macro-name value[tag value...]
macro_append © macro_append macro-name value[tag value ... |
macro_prepend © macro_prepend macro-name value [tag value ...]
macro_remove © macro_remove macro-name value|[tag value ...]
macro_remove all © macro_remove_all macro-namevalue|[tag value ... |
make_fragment © make_fragment fragment-name fragment-option
fragment-option o -suffix=suffix

| -dependencies
| -header=fragment

| -trailer=fragment

manager ! manager manager-name

package : package package-name

path : path path-namevalue[tag value ...]
path_append © path_append path-name value [tag value ...]
path_prepend © path_prepend path-namevalue [tag value ... |
path_remove © path_remove path-name value [tag value ...]
pattern pa]ttern [-global] pattern-name cmt-statement [; cmt-statement
private I private

public © public

Set © set set-namevalue[tag value. ...]

set_append © set_append set-namevalue[tag value ... |
set_prepend © set_prepend set-namevalue| tag value ... |
Set_remove © set_remove set-namevalue [tag value ... |
setup_script © setup_script script-name

tag : tagtag-name]tag ...]

use © use package-name| version-tag [access-path |]

94

[use-option]

version © version version-tag
version-tag : keyversion-number [key release-number [key patch-number] |
use_option © -no_auto_imports

| -auto_imports

key D letter ...
version_strategy © version_strategy version-strategy-name
version-strategy-name @ best_fit

best_fit no_check
first_choice
last_choice

keep_all

17.6 - Theinternal mechanism of cmt cvs operations

Generally, CVSdoes not handle queriesupon the
repository (such asknowing all installed modules, all tags
of the modulesetc..). Varioustools such as CVSWeb, LXR
etc. provide very powerful answersto this question, but all
through aWeb browser.

CMT providesahook that can beinstalled withina CVS
repository, based on a helper script that will be activated
upon a particular CVS command, and that isableto
perform some level of scan within thisrepository and
return filtered information.

More precisely, thishelper script (found in
HCMTROOT}/ mgr/cmt_buildcvsinfos2.sh) is meant to be
declared within the loginfo management file (seethe CVS
manual for mor e details) as one entry named .cmtcvsinfos,
ableto launch the helper script. Thisinstallation can be
operated at once using the following sequence:

95

http://www.cvshome.org/docs/manual/index.html
http://www.cvshome.org/docs/manual/index.html

sh> cd ${ CMIROOT}/ ngr
sh> gnake installcvs

This mechanism isthus fully compatible with standard
remote accessto therepository.

Oncethe helper script isinstalled, the mechanism oper ates
asfollows (this actually describesthe algorithmsinstalled
in the Cvsl mplementation::show_cvs infos method
availablein cmt_cvs.cxx and istranspar ently run when one
uses the cmt cvsxxx commands):

1.

Find alocation for working with temporary files. Thisis
generally deduced from the ${TM PDIR} environment
variableor in /tmp (or in the current directory if none
of these methods apply).

There, install a directory named
cmtcvs/<unique-name>/.cmtcvsinfos

Then, from thisdirectory, try torun a fakeimport
command built asfollows:

cvs -Qinmport -mcnt .cntcvsinfos/<package-nane> CMI v1

Obviousdly thiscommand isfake, since no fileexist in the
temporary directory we have just created. However,
Thisaction actually triggersthe cmt_buildcvsinfos2.sh
script, which simply receivesin its argument the module
name onto which we need infor mation. Thisinformation
isobtained by scanning thefilesinto therepository, and
an answer isbuilt with the following syntax:

[error=error-text] (1)
tags=tag ... (2)
branches=branch ... (3)
subpackages=sub- package ... (4)

1. In caseof error (typically when the requested module

96

isnot found in therepository) a text explaining the
error condition isreturned

2. Thelist of tags found on therequirementsfile

3. Thelist of branches defined in this packages (ie
subdirectories not containing a requirementsfile)

4. Thelist of subpackages (ie subdirectories containing
arequirementsfiles)

Christian Arnault

97

	CMTConfiguration Management Tool
	Version v1r10Christian Arnaultarnault@lal.in2p3.fr

	Contents
	1 - Copyright.
	 2 - Presentation.
	 3 - The conventions.
	 4 - The architecture of the environment.
	 4.1 - Supported platforms

	 5 - Installing a new package.
	 6 - Localizing a package - The CMTPATH configuration parameter.
	 7 - Managing site dependent features - The CMTSITE environment variable.
	 8 - Configuring a package.
	 9 - Selecting a specific configuration.
	 9.1 - Describing a configuration.
	 9.2 - Defining the user tags.
	 9.3 - Activating tags.

	 10 - Working on a package.
	 10.1 - Working on a library.
	 10.2 - Working on an application
	 10.3 - Working on a test or external application
	 10.4 - Construction of a global environment

	 11 - Defining a document generator
	 11.1 - 11.2 - How to create and install a new document style
	 11.2 - How to create and install a new document style
	 11.3 - Examples

	 12 - The tools provided by CMT
	 12.1 - The requirements file
	 12.1.1 - The general requirements syntax
	 12.1.2 - The complete requirements syntax

	 12.2 - The concepts handled in the requirements file
	 12.2.1 - Meta-information : author, manager
	 12.2.2 - package, version
	 12.2.3 - Constituents : application, library, document
	 12.2.4 - Groups
	 12.2.5 - Languages
	 12.2.6 - Symbols : alias, set, set_append, set_prepend, set_remove, macro, macro_append, macro_prepend, macro_remove, macro_remove_all, path, path_append, path_prepend, path_remove
	 12.2.7 - use
	 12.2.8 - pattern, apply_pattern, ignore_pattern
	 12.2.9 - branches
	 12.2.10 - build_strategy, version_strategy
	 12.2.11 - setup_script, cleanup_script
	 12.2.12 - include_path
	 12.2.13 - include_dirs
	 12.2.14 - make_fragment
	 12.2.15 - public, private
	 12.2.16 - tag

	 12.3 - The general cmt user interface
	 12.3.1 - cmt broadcast [-select=list] [-exclude=list] [-local] [-global] [-begin=pattern] [-depth=<n>] [-all_packages] <shell command>
	 12.3.2 - cmt build <option>
	 12.3.3 - cmt check configuration
	 12.3.4 - cmt check files <reference-file> <new-file>
	 12.3.5 - cmt checkout ...
	 12.3.6 - cmt co ...
	 12.3.7 - cmt cleanup [-csh|-sh]
	 12.3.8 - cmt config
	 12.3.9 - cmt create <package> <version> [<area>]
	 12.3.10 - cmt filter <in-file> <out-file>
	 12.3.11 - cmt help
	 12.3.12 - cmt lock cmt lock [<package> <version> [<area>]]
	 12.3.13 - cmt remove <package> <version> [<area>]
	 12.3.14 - cmt remove library_links
	 12.3.15 - cmt run shell-command
	 12.3.16 - cmt setup [-csh|-sh|-bat]
	 12.3.17 - cmt show <option>
	 12.3.18 - cmt system
	 12.3.19 - cmt unlock cmt unlock [<package> <version> [<area>]]
	 12.3.20 - cmt version
	 12.3.21 - cmt cvstags <module>
	 12.3.22 - cmt cvsbranches <module>
	 12.3.23 - cmt cvssubpackages <module>

	 12.4 - The setup and cleanup scripts
	 12.5 - cmt build prototype

	 13 - Using cvs together with CMT
	 13.1 - Importing a package into a cvs repository
	 13.2 - Checking a package out from a cvs repository
	 13.3 - Querying CVS about some important infos
	 13.4 - Working on a package, creating a new release
	 13.5 - Getting a particular tagged version out of cvs

	 14 - Interfacing an external package with CMT
	 15 - Installing CMT for the first time
	 15.1 - Installing CMT on your Unix site
	 15.2 - Installing CMT on a Windows or Windows NT site

	 16 - Differences with previous versions of CMT
	 16.1 - Converting a package that was managed with previous versions of CMT †or methods‡
	 16.2 - Operations in a Windows environment

	 17 - Appendices
	 17.1 - Standard make targets predefined in CMT
	 17.2 - Standard macros predefined in CMT
	 17.2.1 - Structural macros
	 17.2.2 - Language related macros
	 17.2.3 - Package customizing macros
	 17.2.4 - Constituent specific customizing macros
	 17.2.5 - Source specific customizing macros
	 17.2.6 - Generated macros
	 17.2.7 - Utility macros

	 17.3 - Standard templates for makefile fragments
	 17.4 - Makefile generation sequences
	 17.5 - The complete requirements syntax
	 17.6 - The internal mechanism of cmt cvs operations

